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Predicting how biological communities respond to disturbance requires
understanding the forces that govern their assembly. We propose using
human skin piercings as a model system for studying community assembly
after rapid environmental change. Local skin sterilization provides a ‘clean
slate’ within the novel ecological niche created by the piercing. Stochastic
assembly processes can dominate skin microbiomes due to the influence
of environmental exposure on local dispersal, but deterministic processes
might play a greater role within occluded skin piercings if piercing habitats
impose strong selection pressures on colonizing species. Here we explore the
human ear-piercing microbiome and demonstrate that community assembly
is predominantly stochastic but becomes significantly more deterministic
with time, producing increasingly diverse and ecologically complex commu-
nities. We also observed changes in two dominant and medically relevant
antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent
with competitive exclusion induced by a transition from sebaceous to
moist environments. By exploiting this common yet uniquely human prac-
tice, we show that skin piercings are not just culturally significant but also
represent ecosystem engineering on the human body. The novel habitats
and communities that skin piercings produce may provide general insights
into biological responses to environmental disturbances with implications
for both ecosystem and human health.
1. Introduction
How communities of coexisting species originate and are maintained is known
as community assembly, and these processes determine which species thrive
and which perish [1,2]. Similar ecological conditions across environments
might result in community convergence because deterministic niche selection
can promote analogous community profiles [3]. Community divergence may
be driven by changing ecological pressures, but stochastic processes such as
the order and timing of migration and random extirpation of populations can
also play significant roles [4]. Initial colonizers may exert priority effects
where the arrival of one species affects the subsequent colonization and/or
establishment of a different species and produces historical contingency, in
which chance effects can have long lasting consequences for community struc-
ture [4,5]. These priority effects can be pronounced during ecological succession
as communities shift to a stable state after perturbation [6,7]. Understanding
the mechanisms that underlie community assembly will ultimately lead to
better predictions of community as well as individual species responses
to environmental change.

Community assembly processes of human microbiomes have gained recent
interest due to an increasing awareness of their ecological and medical
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significance [5,8,9]. Human microbiomes refer to the collective
microorganisms and genes found within or on human beings
[10]. Such microbiota consist largely of bacteria but also
viruses, archaea, and microscopic eukaryotes like protists
and fungi, and different communities inhabit various parts of
the human body [10,11]. As the largest organ, the skin rep-
resents a diverse ecosystem of habitats for microbes that are
constantly exposed to changing external conditions [12].
Although a dearth of nutrients results in the skin containing
relatively low biodiversity [13], distinct core taxa can be
found on ecologically dissimilar parts of the skin [14,15].
Two of the most common and abundant genera present on
human skin include Cutibacterium (formerly Propionibacterium)
and Staphylococcus, which dominate at sebaceous and moist
sites, respectively [13,16]. Functionally, the human skin
microbiome plays an important role in maintaining cutaneous
health [17]. Pathogenic species such as Staphylococcus pyogenes,
Staphylococcus aureus, and group A Streptococcus are known
to cause skin infections while commensal species like
Cutibacterium acnes and Staphylococcus epidermidis can protect
from pathogens through regulation of the immune system
[18]. Shifts in the human skinmicrobiome have been associated
with many disease states like atopic dermatitis [19], psoriasis
[20], acne vulgaris [21] and chronic wounds [22], but studies
on the community dynamics of healthy skin microbiomes,
especially after extrinsic perturbation, are less common
(but see [23–26]). These studies show that many common
activities such as using cosmetics and topical creams, sun
exposure, direct contact sport, mineral bathing, and moving
homes constitute rapid environmental disturbances for the
human skin microbiome. These activities have potentially
significant and unintentional impacts onmicrobial community
assembly with differential ecological and evolutionary
responses according to scale and functional contexts of specific
taxonomic groups. Thus, the human skin microbiome is
highly dynamic and the underlying assembly processes can
have important health implications, such as in understand-
ing ecological succession of microbial communities during
wound recovery or dermatological disorders [27,28]. Commu-
nity assembly processes of human skin microbiomes are
also readily apparent due to relatively simple taxonomic
compositions and short bacterial generation times.

One uniquely human activity that might affect the skin
microbiome is skin piercing. Skin piercing has been present
in human societies at least as far back as Ötzi the Iceman,
who lived nearly 5000 years ago andwas found to have pierced
earlobes [29]. Skin piercings have been used to express both
individual and group identities and served significant roles
in traditional customs and rites of passage in various cultures
around the world [30]. In addition to its anthropological
and sociological importance, here we propose human skin
piercings as amodel for studying biological community assem-
bly processes after rapid environmental change. Piercing
practices typically begin with surface sterilization of the
skin, which we hypothesize functions as a major environ-
mental disturbance to the local skin microbiome. The
piercing of the skin then reshapes the skin’s physical topology,
which is immediately followed by insertion of surgical
stainless-steel studs for usually at least two weeks. This
is expected to produce a novel ecological niche that differs
from the previously unpierced skin in many ways such as
surface area, temperature, acidity, humidity, and environ-
mental exposure. This drastic environmental shift should
fundamentally alter the ecological and evolutionary forces
acting on the piercing microbiome.

Here, we hypothesize that human ear-piercing micro-
biomes (1) become more diverse and ecologically complex
because the novel piercing environment offers increased
protection, stability, and nutrients, (2) will exhibit less historical
contingency because ecological succession will result in the
deterministic assembly of an equilibrium community struc-
ture, and (3) reflect a transition of the skin environment from
sebaceous to moist through increased moisture retention,
resulting in a reduction of Cutibacterium and an increase in
Staphylococcus. We tested these hypotheses by sampling the
microbiomes of human ear-piercings over a two-week time
period. Longitudinal samples of skin microbiomes from
adjacent unsterilized and unpierced skin were collected simul-
taneously as controls for temporal variation. Other than
previous clinical investigations of piercing infections, to our
knowledge, this study represents the first investigation of the
human piercing microbiome.
2. Methods
(a) Human research ethics approval
Protocols for study participant recruitment, data security, sample
collection, and associated procedures were approved by the
McGill University Research Ethics Board Office (REB-1 no.
70-0617).

(b) Sample collection
From October 2019 to March 2020, we recruited 28 individuals
who were receiving earlobe piercings at Tattoo Lounge MTL in
Montreal, Quebec, Canada and received their written, informed
consent to participate in the study (electronic supplementary
material, figure S3). Following standard ear-piercing protocols,
we sterilized the earlobe skin area to be pierced with a benzalko-
nium chloride antiseptic towelette (Jedmon Products)
immediately before piercing.We pierced earlobes using a sterilized
bevelled hollow needle (Ruthless/Precision) and then inserted a
5/16” surgical steel grade (316L) piercing labret stud composed
of chromium, nickel, and molybdenum. Both needle and stud
were dipped in a water-based lubricant jelly (Personelle, Jean
Coutu) to minimize friction and then cleaned off afterwards
using a cotton-tipped swab. We collected skin swab samples
using the DNA/RNA Shield Collection Tube w/Swab – DX
(Zymo Research), which was used to preserve nucleic acids
within samples at ambient temperatures. The piercer collected
samples from the earlobe to be pierced and an adjacent unsteri-
lized part of the ear farther up the ear but still part of the earlobe
skin to serve as a temporal control. Samples were collected both
before and after the piercing event (defined as a three-part process
that includes (A) skin sterilization followed by (B) skin piercing
and then (C) insertion of the metal stud). Study participants
were then instructed to self-sample both the piercing and the adja-
cent skin control while wearing gloves over the following two
weeks at specified timepoints: 12 h, 1 day, 3 days, one week, and
two weeks. Additionally, environmental controls were collected
by the piercer before the piercing and by the participant at the
one- and two -week timepoints by waving a swab in the air for
30 s. In total, we collected 17 samples from each participant.

(c) DNA extraction and amplicon sequencing
We extracted DNA from swabs using the DNeasy PowerSoil
kit (QIAGEN) and then purified using the OneStep PCR Inhibi-
tor Removal kit (Zymo Research). Skin swab samples and
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environmental controls were processed with a DNA extraction
negative control included within each batch of 24 extractions.
This work was carried out in a laboratory facility designed to
handle low-copy and highly degraded environmental DNA
samples through mitigation of contamination factors (e.g. no
exposure to PCR products, regular deep cleaning, and strict
usage protocols limited to trained personnel). The V1–V3
region of the 16S rRNA gene was PCR amplified using the
primers 27F (50-AGAGTTTGATCCTGGCTCAG-30) and 518R
(50-ATTACCGCGGCTGCTGG-30) [31]. Library preparation,
quality control, and high throughput sequencing with Illumina
MiSeq v2/v3 were conducted at Génome Québec and the
McGill Genome Centre (Montreal, Quebec, Canada).

(d) Data processing
We processed raw sequences using the QIIME2 bioinformatics
pipeline [32]. We trimmed primer sequences using cutadapt
before generating amplicon sequence variants (ASVs) using
DADA2 [33]. We identified contaminant ASVs using environ-
mental and DNA extraction negative controls for each
sequencing batch with the prevalence-based method at a
classification threshold of p* = 0.5 within decontam [34]. We
considered the unpierced control of each individual to be exper-
imentally valid only if it exhibited no significant differences from
the microbiome of the skin to be pierced prior to piercing. Thus,
we defined statistical outlier individuals as having an absolute
difference in ASV richness between sample and control prior to
piercing that was greater than 1.5 times the interquartile range
across all individuals [35]. We removed a total of 1047 contami-
nant ASVs and two statistical outlier individuals resulting in
10 915 ASVs across 392 samples with a mean sequencing depth
of 27 817 reads per sample. We aligned ASVs using MAFFT
and built phylogenetic trees using FastTree 2 based on Jukes–
Cantor distances. For taxonomic assignment, we used the 27F/
518R 16S rRNA primers to in silico extract the target V1–V3
amplicon from the SILVA 132 database [36]. We trained a naïve
Bayes classifier using scikit-learn on the extracted database and
then used it to taxonomically assign ASVs from domain down
to species. We accepted assignments if classification confidence
was at least 0.7 [37].

(e) Statistical analyses
We normalized ASV counts via total sum scaling (TSS), and
calculated biodiversity indices, principal coordinate analysis
(PCoA), and PERMANOVA (999 permutations) using the
R ‘phyloseq’ and ‘vegan’ packages implemented within Micro-
biomeAnalyst 2.0 [38–40]. We did not rarefy data to maximize
the amount of data analysed and the number of participants
included in the study [41]. We measured alpha and beta diversi-
ties using Chao1 and Bray–Curtis dissimilarity, respectively. We
calculated betadisper separately using the R ‘vegan’ package ver-
sion 2.6-2 and used ‘ggstatsplot’ version 0.10.0 for plotting
within RStudio Desktop version 2022.12.0 + 353 and R version
4.2.2 [39,42,43]. We built ASV co-occurrence networks using
random matrix theory (RMT)-based Spearman’s rank correlation
through the Molecular Ecological Network Analysis (MENA)
pipeline implemented within the Integrated Network Analysis
Pipeline (iNAP) [44]. We first filtered data by retaining only
ASVs present in greater than 15% of samples and then log trans-
formed the filtered data before calculating similarity matrices
allowing a single timepoint lag for time-dependent interactions.
We visualized co-occurrence networks using Cytoscape version
3.9.1 keeping only nodes with valid genus-level taxonomic
assignments and edges with a p-value < 0.05. We used the
‘iCAMP’ R package v. 1.5.12 [45] to calculate pNST [46] and
infer community assembly mechanisms by phylogenetic bin-
based null model analysis. We used bootstrapping tests with a
resampling size of 1000 to assess significant pairwise differences
between timepoints. We classified core microbiome community
taxa based on a minimum of 5% relative abundance across at
least 50% of all samples.
3. Results and discussion
(a) Human piercings increase diversity and ecological

complexity
Sudden events that cause drastic environmental change for
human skin can lead to fundamental shifts in skin micro-
biomes. For example, human birth involves moving from an
environment that is liquid and mostly sterile to one exposed
to air and microbial colonization, which contributes to
increased skin microbiome diversity and differentiation for
human infants through their first year of life [47]. Analogously,
we found that skin piercings were strongly associated with a
significant increase in ASV richness (i.e. number of unique
DNA sequences) at the piercing site over two weeks
(figure 1a). By contrast, ASV richness of the unpierced controls
remained stable over the same time period (figure 1b). Skin
piercings likely represent the creation of hospitable niches for
certain bacteria that thrive in areas of greater occlusion, moist-
ure, and nutrient retention. Occlusion increases skin pH and
produces moisture through transepidermal water loss, which
supports bacterial growth and survival [48]. Piercing studs
may physically trap and accumulate debris including sweat,
sebum, and pieces of stratum corneum that serve as primary
nutrient sources for most human skin microbiome members
[49]. Undisturbed occluded skin microbiomes also exhibit the
greatest longitudinal stability, presumably due to physical
protection from external perturbation [14].

Piercings were also associated with a significant increase in
dispersion of beta diversity (i.e. increased dissimilarity in com-
munity composition between piercing microbiomes) by two
weeks after piercing (figure 1c) whereas beta diversity did not
change between timepoints in the unpierced controls
(figure 1d). Thus, the piercing environment may have caused
greater variance in community structure over time, which is con-
sistent with the increase in alpha diversity and supports the idea
that piercings produce novel ecological niches. The greatest
source of temporal variation in beta diversity of both piercing
microbiomes and unpierced controls, however, was differences
between individuals (electronic supplementary material, Appen-
dix, figure S1). Metadata of study participants collected through
questionnaire surveys revealed no significant relationships
between the skin piercing microbiome and host factors and
behaviors including hygiene, travel, and physical activity (elec-
tronic supplementary material, Appendix, Methods). However,
some behavioural differences across individuals, such as hetero-
geneity during self-sampling (e.g. pressure applied to swabs),
may not have been captured by our questionnaire and these
effects may have masked the importance of more nuanced
factors on the skin piercing microbiome.

Because beta diversity did not change significantly until
the two-week timepoint, the two-week sampling period of
this study may have been insufficient to fully capture the
ecological succession process. Human skin microbiome
communities can be surprisingly stable even at highly
exposed and perturbed body sites like the face and palm as
well as in the long-term for up to two years [50,51]. Other
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recent longitudinal studies on chronic and acute skin disturb-
ances such as diabetic foot ulcers [52], burn wounds [53],
and chlorhexidine disinfectants [54] have demonstrated
that post-disturbance community structure remains quite
stable from 3 to 56 days later despite other significant
ecological impacts.
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Network analyses revealed co-occurrence and exclusion
patterns of human skin microbiomes driven largely by
body sites representing distinct microbial habitats [55].
Environmental factors (e.g. elevation [56] and urban living
[57]), skin physiology (e.g. ageing [58] and skin sensitivity
[59]), and skin products (e.g. lotion [60]) can also affect var-
ious properties of skin microbiome network topology.
Correlational analyses have been widely used to infer real-
world biotic interactions from amplicon sequencing data
but suffer from producing spurious and indirect associations,
especially for rare ASVs in zero-inflated data typical of
skin microbiomes [61–63]. Time-series experiments can help
address these issues by making it possible to infer direction-
ality and time-dependency of interactions, which are often
asymmetrical [64]. To examine how piercings may have
impacted the ecological interactions within skin microbiomes,
we constructed co-occurrence networks via the MENA
pipeline. Although there was little difference in the absolute
number of nodes between piercing and unpierced networks,
the number of edges was consistently higher in the piercing
network, suggesting a greater number of biotic interactions
among microbiome members (figure 2a and b). This increase
in ecological complexity is potentially associated with more
available resources [65], which we predicted to occur due to
accumulation of nutrients in the occluded piercing environ-
ment. The relationship between ecological complexity and
resilience to environmental disturbance can be either positive
[66] or negative [67] depending on the interdependency of
interactions, and complexity can have significant implications
for microbial ecosystem functioning [68]. Ecological complex-
ity is also sensitive to shifting selection pressures [69], which
is further evidence suggesting that the piercing environment
represents a novel ecological niche.

(b) Stochasticity and determinism during community
assembly in piercing microbiomes

To directly assess the relative contribution of deterministic
and stochastic processes in the community assembly of the
piercing microbiome, we used community assembly mechan-
isms by phylogenetic-bin-based null model analysis
(iCAMP). iCAMP employs the beta net relatedness index
(βNRI) and taxonomic beta diversities with the modified
Raup–Crick (RC) metric to partition deterministic processes
into either heterogeneous selection or homogeneous selection,
and stochastic processes into homogenizing dispersal, disper-
sal limitation, or drift [45]. In contrast to heterogeneous
selection, homogeneous selection occurs when environmental
conditions are stable and consistently exerting similar selec-
tion pressures over space and/or time [70]. Homogeneous
selection typically leads to greater phylogenetic relatedness
because related communities are often ecologically similar
whereas heterogeneous selection produces greater phyloge-
netic dissimilarity. The iCAMP analysis indicated that
stochasticity was dominant in both piercing microbiomes and
unpierced controls (figure 3a), specifically through dispersal
limitation (relative importance of 73.1% in piercing, 76.8% in
unpierced) with minimal contributions from drift (0.25%
in piercing, 0.43% in unpierced) and none from homogenizing
dispersal (figure 3b). Deterministic assembly processes were
largely accounted for by homogeneous selection (24.3% in pier-
cing, 19.8% in unpierced) with minor contributions from
heterogeneous selection (2.3% in piercing, 2.9% in unpierced)
(figure 3b). We found that twoweeks after piercing, the relative
contribution of dispersal limitation decreases while homo-
geneous selection increases (figure 3b). Stochasticity between
the to-be pierced and unpierced control skin differed, with
high variation observed in both. This may suggest substantial
variation in the proportion of stochastic versus deterministic
assembly processes even at very short distances between
adjacent skin of the same body part. However, alpha diversity
between pierced samples and unpierced controls does
exhibit strong correspondence, providing support for the val-
idity of using adjacent unpierced skin as controls (electronic
supplementary material, Appendix, figure S1A and C).
The dominance of stochasticity and its decrease over time in
piercing microbiomes was also supported by phylogenetic
normalized stochasticity ratio (pNST) analyses (electronic
supplementary material, Appendix, figure S2), which is
based on beta mean nearest taxon distance (βMNTD) [46].
These results suggest that community assembly of the piercing
microbiome becomes more deterministic with time, consistent
with the hypothesis that piercings produce a novel yet consist-
ent and stable microhabitat that leads to homogeneous
selection pressures.

To better understand the difference in temporal dynamics
between piercing microbiomes and unpierced controls, we
next explored time-lagged correlations within ecological
networks, which can be indicative of time-dependent inter-
actions such as priority effects. Both piercing microbiomes
and unpierced controls were comprised of significantly more
time-dependent interactions, with 69% in the piercing (one-
sided one-proportion Z test, p = 9.66×10−6) and 79% in the
unpierced (one-sided one-proportion Z test, p = 2.11 × 10−8)
networks (figure 2a and b). The lower proportion of time-
dependent interactions in the piercing network could be
caused by an increase in deterministic selection forces (e.g.
environmental filtering) of the newly created environmental
niches within piercings. An increase in determinism reduces
the relative importance of stochastic processes like historically
contingent dispersal [71], although the difference in pro-
portions between piercing and unpierced networks was
insignificant (one-sided two-proportion Z test, Z =−1.54,
p = 0.062, 95% CI [−1, 0.004]). Another potential and non-
mutually exclusive explanation could be that environmental
disturbance from piercings compresses the spatio-temporal
niche of the microbiome by increasing species abundances
which leads to greater species interactions that are not time-
lagged. Evidence for this mechanism was recently discovered
when anthropogenic landscape modification was found to
increase co-occurrence of wildlife species [72].

Network correlations can be either positive or negative
reflecting the nature of potential ecological interactions. The
positive-to-negative links (P/N) ratio has been proposed as
a marker for differentiating healthy and diseased microbiome
networks by detecting shifts in the balance between facilita-
tive and inhibitive interactions [73]. Here, the P/N ratio
was able to distinguish piercing (P/N = 1.42) from unpierced
(P/N = 0.88) networks (figure 2a and b), with more positive
than negative edges in the piercing network, whereas the
opposite was true of the unpierced network. The proportion
of positive edges was significantly greater in the piercing
than unpierced network (one-sided two-proportion Z test,
p = 0.0418, 95% CI [0.007, 1]). Positive network associations
may represent facultative and obligatory commensalisms
or mutualisms between taxa, but they can also reflect the



(a)

(b)

Figure 2. Piercing microbiomes exhibit a greater proportion of positive and direct ecological interactions. Molecular ecological networks of the (a) piercing micro-
biome (orange) contained 35 nodes and 121 edges, and (b) unpierced controls (blue) contained 37 nodes and 90 edges. Each node represents an individual ASV
labelled by its genus identity (only nodes with genus identities shown), and edges represent correlation-inferred interactions. Concurrent interactions are shown as
solid lines and time-dependent interactions are shown as dotted lines. The piercing and unpierced networks contain 69% and 79% time-dependent interactions,
respectively. Positive interactions are coloured in green and negative interactions are coloured in red. The positive-to-negative links (P/N) ratio is 1.42 for the piercing
network and 0.88 for the unpierced network.
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co-occurrence of taxa with high niche overlap that are ecolo-
gically or functionally similar (i.e. environmental filtering)
[74]. There is evidence that, during secondary succession
(i.e. post-disturbance recolonization), a general shift to posi-
tive interactions may help a community respond to
environmental stress through neighbourhood habitat ameli-
oration, where one species changes the environment in a
way that facilitates the growth and survival of another
species [75]. Positive biotic interactions and environmental
filtering are not mutually exclusive because positively
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Figure 3. Community assembly of piercing microbiomes became more deterministic. (a) Relative contribution of stochastic assembly processes between piercing
microbiomes (orange) and unpierced controls (blue). Stochasticity significantly decreased by two weeks after piercing ( pairwise bootstrap, p = 0.0352). Box and
whiskers show the minimum, maximum, median and 25th and 75th percentiles. (b) Relative contribution of deterministic (open markers) and stochastic (closed
markers) processes to community assembly in piercing microbiomes (orange) and unpierced controls (blue). Deterministic processes include homogeneous selection
(open square) and heterogeneous selection (open diamond), and stochastic processes include dispersal limitation (solid circle), homogenizing dispersal (solid square),
and drift (solid triangle). Error bars indicate standard deviations around the mean.
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interacting taxa that share similar niches would increase
positive network associations through both mechanisms.
Regardless, both are deterministic processes [76]. Thus, con-
trasting P/N ratios of piercing and unpierced networks
suggests that piercings are strongly associated with a
deterministic ecological shift for the local skin microbiome.

(c) Piercings cause a shift towards moist skin
microbiomes

While piercing infections are common medical complications
[77] and a variety of specific pathologies have been identified
[78,79], the community composition and temporal dynamics
of uninfected human piercing microbiomes have yet to be
characterized. Because piercings can potentially trap moisture
by mitigating evaporation, we predicted that the piercing
microbiome should develop to resemble skin microbiomes
found in moist areas such as the nose, armpit, or groin. We
found that the two-week phylum-level community compo-
sition of the piercing microbiome was dominated by
Actinobacteriota (Actinomycetota) and Firmicutes (Bacillota),
followed by Proteobacteria (Pseudomonadota) with
relatively few Bacteroidota (Bacteroidetes). Actinobacteriota
was largely represented by the families Propionibacteriaceae
and Corynebacteriaceae, specifically the genera Cutibacterium
andCorynebacterium, respectively. Firmicutes wasmainly com-
prised of Staphylococcaceae and Streptococcaceae at the family
level and Staphyloccocus and Streptococcus at the genus level,
respectively. Although we could not assign a species identity
to a large proportion of ASVs, just two species, namely
Cutibacterium acnes and Staphylococcus epidermidis, emerged as
core taxa of the piercing microbiome given their relative abun-
dance and wide prevalence (figure 4a). These two species
encompassed more than half of the community in 58% of
our samples, with an average of 44%C. acnes and 8.6% S. epider-
midis. Corynebacterium was the third most dominant genus at
6.6%, but the most prominent Corynebacterium ASV could not
be classified to species-level and all genus-levelCorynebacterium
ASVs failed tomeet the core taxa criteria. FollowingC. acnes and
S. epidermidis across time confirms that they experience dramatic
longitudinal shifts in the expected directions: a significant
decrease in the relative abundance of C. acnes and a significant
increase in relative abundance of S. epidermidis (figure 4b and c).
These findings are consistentwith amoist piercing environment
because Cutibacterium species are known to be dominant mem-
bers of sebaceous skin microbiomes, including specifically the
external auditory canal, while Staphylococcus is mainly associ-
ated with moist skin [80]. These significant longitudinal
changes in C. acnes and S. epidermidis were not observed in
the unpierced controls (figure 4d and e).

Beyond associations with distinct skin ecologies, the two
core taxa, C. acnes and S. epidermidis, are well-known commen-
sals and opportunistic pathogens of human skin as well as
direct antagonists. Both C. acnes and S. epidermidis are
common members of skin microbiomes that help maintain
skin homeostasis through competitive exclusion of potential
pathogens, production of antibacterial bacteriocins, and prim-
ing of the skin’s innate Toll-like receptor (TLR) immune system
[18,81]. Against each other, however, they compete using a var-
iety ofmethods including the production of antimicrobial short
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chain fatty acids [82], bacteriocins and polymorphic toxins [83],
and electricity [84]. The strong antagonism between C. acnes
and S. epidermidis may help explain the observed change in
the piercing microbiome. If the novel piercing environment
directly affects a single species, through either greater selection
against C. acnes or increased relative fitness of S. epidermidis, it
should induce an opposite trajectory of the corresponding
species. Numerous skin diseases like acnes, dermatitis, rosacea,
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and psoriasis have been associated with lower relative abun-
dance and/or a loss in taxonomic diversity of Cutibacterium
[85]. However, over-colonization of C. acnes can lead to micro-
comedone formation and acne if S. epidermidis fails to control its
proliferation [86]. An imbalance between C. acnes and S. epider-
midis has also been shown to activate skin inflammation
through the production of cytokines [87]. While both species
are known opportunistic pathogens given the right environ-
mental context [88], S. epidermidis represents the most
common source of infections on indwelling medical devices
such as central venous catheters and joint prostheses [89]. A
major similarity between internal medical implants and exter-
nal skin piercings is the insertion of foreign metal objects into
the human body, which involves direct contact with the micro-
biota living in and on human skin. We hypothesize that the
novel piercing ecological niche is more advantageous to S. epi-
dermidis due to increased moisture, decreased sebum, and/or
the new metal surface area that may support biofilm growth.
The growing population of S. epidermidis can then reduce C.
acnes abundance through antagonistic interactions, but further
studieswill be needed to confirm this hypothesis. Such ecologi-
cal relationships between specific dominant species could
potentially be exploited to informpre- andprobiotic treatments
to prevent and control skin infections through competition or
direct antagonisms with pathogenic microbiota [90]. Thus,
skin piercings may serve as a model for understanding
environmental disturbances by shedding light on the
ecological dynamics of specific, medically relevant species.

(d) Piercings as a model for studying biological
responses to environmental change

Our study provides the first glimpse into the bacterial commu-
nities inhabiting human ear-piercings. We show that the
piercing process—skin sterilization, piercing of the skin, and
insertion of a metal stud—has a demonstrable impact on the
ecology of the local skin microbiome. Despite sterilization ser-
ving as a major environmental disturbance that kills many
resident species, we found that, over time, the new piercing
environmentwas significantly associatedwith greater biodiver-
sity and ecological complexity, with fundamental differences in
the nature of biotic interactions compared to exposed earlobe
skin. The assembly of piercing microbiomes, however,
remained dominated by stochastic dispersal typical of other
skin microbiomes. Piercing microbiomes did not converge
towards a single community structure but rather composition
varied widely across individuals. Despite this, deterministic
homogeneous selection did become more important with
time, indicating some level of environmental filtering in the
piercing environment. Piercing microbiomes showed less his-
torical contingency than unpierced controls, consistent with
greater contemporary selection. Similar to the microbiome of
belly buttons [91], piercing microbiome communities
are diverse but contain a few predictably dominant taxa.
Specifically, we identified two major species, C. acnes and
S. epidermidis, that show a change consistent with their
known competitive antagonism and habitat associations,
suggesting that piercings are moist environments. Studying
how these two medically significant core species respond
to rapidly changing environmental conditions within
their natural communities may provide novel avenues to
understanding their pathogenicity, of which interspecies inter-
actions are known to play a major role [92,93]. Ecological
disturbance experiments in natural ecosystems have tradition-
ally been labour-intensive and difficult to replicate [94]. By
significantly altering the composition and ecology of the resi-
dent human microbiome, skin piercings could serve as a
model for insights into the response ofmicrobiomes to environ-
mental disturbance as well as community assembly processes
more generally. As human beings, we have practised the art
of skin piercing for cultural, religious, and personal expression
across diverse societies for thousands of years. Here we reveal
that skin piercings also represent a form of ecosystem self-
engineering of the ecological landscape that is the human skin.
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