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ABSTRACT

The study of ecological speciation is inherently linked to the study of selection. Meth-

ods for estimating phenotypic selection within a generation based on associations

between trait values and fitness (e.g. survival) of individuals are established. These

methods attempt to disentangle selection acting directly on a trait from indirect selec-

tion caused by correlations with other traits via multivariate statistical approaches (i.e.

inference of selection gradients). The estimation of selection on genotypic or genomic

variation could also benefit from disentangling direct and indirect selection on genetic

loci. However, achieving this goal is difficult with genomic data because the number

of potentially correlated genetic loci (p) is very large relative to the number of individ-

uals sampled (n). In other words, the number of model parameters exceeds the number

of observations (p ≫ n). We present simulations examining the utility of whole-gen-

ome regression approaches (i.e. Bayesian sparse linear mixed models) for quantifying

direct selection in cases where p ≫ n. Such models have been used for genome-wide

association mapping and are common in artificial breeding. Our results show they

hold promise for studies of natural selection in the wild and thus of ecological specia-

tion. But we also demonstrate important limitations to the approach and discuss study

designs required for more robust inferences.
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Introduction

Natural selection is the mechanism of adaptation and

often drives speciation (Schluter 2001; Schluter & Conte

2009; Gompert et al. 2012; Nosil 2012). Consequently,

many attempts have been made to measure phenotypic

selection in the wild, with the earliest studies occurring

in the late 1800s (Bumpus 1899; Endler 1986; Kingsolver

et al. 2001; Siepielski et al. 2013). Phenotypic selection

can be quantified from changes in the distribution of

trait values in a population within a generation (due to

mortality), or from the association between trait values

and quantitative measures of fitness components (e.g.

seed set, weight, etc.; Lande & Arnold 1983; Shaw et al.

2008). However, correlations among characters compli-

cate measures of selection, as direct selection on one

character induces indirect selection on correlated char-

acters (Table 1 , Fig. 1). Consequently, the total selection

experienced by a trait can include direct selection on

that character and the indirect effects of selection on

any correlated characters (Kingsolver et al. 2001). Lande

& Arnold (1983) showed that direct and indirect selec-

tion can be disentangled using multiple regression.

Specifically, partial regression coefficients obtained from

regressing fitness on a set of characters are estimates of

the direct selection on each trait (these coefficients

define the average gradient of the relative fitness
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surface). Although many modifications and refinements

of this approach have been made (e.g. Schluter 1988;

Rausher 1992; Geyer et al. 2007; Reynolds et al. 2016),

these changes have not altered the conceptual basis of

the approach.

More recently, attempts have been made to measure

selection on genetic loci or genomes based on short-term

(e.g. within-generation) changes in allele frequencies

(e.g. Barrett et al. 2008; Anderson et al. 2013; Pespeni

(a)

(b)

(c)

Fig. 1 Schematic representation of how phenotypic selection

drives allele frequency change across the genome, either

directly or indirectly because of correlations among traits and

noncausal loci. Panel (a) shows how direct phenotypic selec-

tion on a trait (in this case trait 2) alters the distribution of that

trait. Panel (b) shows how selection on trait 2 (black arrows

denote the direction of selection) can cause a response to selec-

tion at a correlated trait (trait 1) that itself has no effect on fit-

ness and thus at genetic variants that underlie variation in the

correlated trait (green arrows give the direction of the

response) when correlations exist as denoted by the grey

ellipses. Panel (c) shows how the response to selection depends

on patterns of LD. Here, horizontal lines denote chromosomes,

vertical bars correspond to genetic variants with (peach) or

without (black) effects on trait 2 (i.e. the trait that affect fit-

ness), and vertical arrows indicate the magnitude of the

response to selection (direct selection only occurs on the causal

variants).

Table 1 Glossary of key terms

Term Definition

Direct selection Selection on a genetic locus resulting

from its effect on fitness

Indirect selection Selection on a genetic locus caused by

LD with directly selected genotypes at

other loci

Total selection Combined effects direct and indirect

selection on a genetic locus

Linkage

disequilibrium (LD)

Statistical correlations between

genotypes at different loci (physical

linkage can facilitate LD but is not

required for it)

Selection

coefficient (s)

Measure of the strength of selection

(direct or total), often expressed as the

difference in expected fitness between

alternative homozygotes

Polygenic modelling Methods for connecting phenotypes to

genotypes that consider many loci at

once and do not rely on binary

classifications of loci as associated or

un-associated with phenotype

PVE Proportion of the phenotypic variation

explained by the genetic data, which

should approach the narrow-sense

heritability of the trait (fitness) as the

genome becomes saturated with

genetic markers

PGE The proportion of the PVE explained

by loci with measurable effects on a

trait (fitness); the remainder of the

PVE comprises loci with near

infinitesimal effects

n-c Number of genetic markers with

measurable effects on the phenotype

(fitness)

PIP Posterior inclusion probability, that is

the posterior probability that a genetic

marker is under direct selection (or is

in high LD with an un-sequenced

locus under direct selection)

HPDI Highest posterior density interval, that

is the interval that contains the most

probable parameter values such that

every value in the interval is more

probable than any value not in the

interval
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et al. 2013; Anderson et al. 2014; Gompert et al. 2014;

Egan et al. 2015; Thurman & Barrett 2016). The premise

of these studies is that phenotypic selection within a gen-

eration alters the distribution of trait values and that this

results in a within-generation shift in allele frequencies

at the causal loci affecting these traits (direct selection)

and other genetic variants in linkage disequilibrium

(LD) with them (indirect selection; Fig. 1). The extent to

which phenotypic selection is transmitted down to the

genetic-level depends on the heritability of the selected

traits and patterns of LD. In stark contrast to our under-

standing of phenotypic selection, relatively little is

known about individual episodes of selection on genetic

loci, particularly under natural or semi-natural condi-

tions (Barrett & Hoekstra 2011; Thurman & Barrett 2016).

This is relevant, as measuring selection at the genetic-

level could help resolve key questions about the mainte-

nance of molecular variation in populations (e.g. Gille-

spie 1991; Hahn 2008; Huang et al. 2014) and the causes

of ecological specialization (e.g. Agrawal et al. 2010;

Anderson et al. 2013; Gompert et al. 2015; Gompert &

Messina 2016). Quantifying selection in the wild is also

important for understanding speciation, as reproductive

isolation often evolves as a direct consequence of diver-

gent selection and local adaptation (e.g. Jiggins et al.

2001; Nosil et al. 2002; Lowry & Willis 2010; Ording et al.

2010). Indeed, divergent selection is a form of reproduc-

tive isolation when it causes immigrant or hybrid invia-

bility (Wu 2001; Nosil et al. 2005). Moreover, direct or

indirect selection on genetic loci and genomes can cause

DNA sequence divergence that pleiotropically results in

reproductive incompatibilities (e.g. Swanson & Vacquier

2002; Tang & Presgraves, 2009). Finally, the likelihood of

speciation with gene flow and the persistence of distinct

species upon secondary contact depend critically on the

genome-wide consequences of selection (Barton &

Bengtsson 1986; Barton & De Cara 2009; Feder et al.

2012; Flaxman et al. 2013; Feder et al. 2014; Flaxman et al.

2014; Yeaman 2015).

Distinguishing between the direct and indirect effects

of episodes of selection on allele frequency change is a

notable challenge for genomic studies. Under most con-

ditions, the number of correlated genetic loci will

greatly outnumber the number of individuals studied

(genome scans typically consider tens of thousands to

millions of nucleotide variants and many fewer individ-

uals). Thus, traditional statistical methods, such as the

multiple regression approach proposed by Lande &

Arnold (1983) for phenotypic selection, cannot be used

to obtain estimates of direct selection on each locus

(such methods require the number of observations, n, to

exceed the number of model parameters, p). In other

words, parsing direct and indirect selection on pheno-

typic and genomic variation present the same

conceptual issue, but different analytical tools are

needed for the latter because p ≫ n.

We show that this problem can be approached using

sparse linear mixed models that were developed for

genome-wide association (GWA) mapping of polygenic

traits and genomic prediction (Meuwissen et al. 2001;

Ober et al. 2012; Habier et al. 2013; Zhou et al. 2013).

The potential utility of GWA methods is unsurprising,

as measuring episodes of selection on genetic loci is a

special case of trait mapping. However, the conditions

and study designs under which these methods will be

most useful for inferring selection require further quan-

tification, which we provide here. We focus on a speci-

fic model, the Bayesian sparse linear mixed model

(BSLMM) introduced by Zhou et al. (2013), but related

models and methods exist and will likely yield similar

broad conclusions (e.g. Erbe et al. 2012). The method we

focus on uses Bayesian variable selection, model averag-

ing and shrinkage inducing priors to extend the Lande

& Arnold (1983) multiple regression approach to cases

where the number of characters (i.e. loci) exceeds the

number of observations.

Herein, we demonstrate the utility and limitations of

BSLMMs for studying selection by applying this

method to a series of simulated data sets. We show that

BSLMMs can be used to detect direct selection when fit-

ness has a simple genetic basis. Additionally, we show

that BSLMMs can generate quantitative summaries of

selection across the genome, such as estimates of the

additive genetic variation for fitness, under a wider

variety of conditions. Whereas the quantitative sum-

maries could also be obtained using traditional quanti-

tative genetic breeding designs, such methods are not

practical for many nonmodel organisms. Thus,

approaches such as those considered here could help

extend the direct study of selection to a broader range

of organisms, an important goal if we are to achieve

general understanding of ecological speciation.

Methods

Theoretical background and statistical models

We first present a general framework and issues for

inferring selection and then describe how BSLMMs can

be used to infer direct selection. Multiple approaches

exist to infer total selection, that is the combined effects

of direct and indirect selection on a genetic locus (e.g.

Anderson et al. 2014; Gompert et al. 2014). Key differ-

ences include whether one estimates a selection differ-

ential (as has been done in some phenotypic studies) or

a selection coefficient (as used in population genetic

theory, e.g. Ewens 2004), and how one assesses statisti-

cal significance. Selection differentials for bi-allelic
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genetic loci can be calculated as d ¼ p1 � p0, where p0
and p1 are the population allele frequencies before and

after selection, respectively (here we assume viability

selection). While selection differentials are intuitive in

phenotypic studies, selection coefficients are more use-

ful for quantifying total selection on genotypes and are

more directly related to population genetic models.

Assume genotypes A1A1, A1A2 and A2A2 have relative

expected fitnesses of w11, w12 and w22, respectively

(here marginal fitnesses are defined based on the fitness

effects of the genotypes and patterns of LD with other

causal variants). The selection coefficient s is then

defined based on the difference in the marginal fit-

nesses of alternative homozygotes, such that,

w11 ¼ 1 þ s, w12 ¼ 1 þ hs and w22 ¼ 1 (here h

denotes the heterozygote effect, that is the fitness of the

heterozygote relative to the difference between the two

homozygotes; Gillespie 2004). Under this formulation,

ŝ ¼ p1 � p0
p0ð1� p0Þðp0 þ hð1� 2p0ÞÞ ð1Þ

Thus, selection coefficients represent a particular stan-

dardization of the selection differential based on genetic

variation, and one that differs from the standardization

used in phenotypic studies (in phenotypic studies selec-

tion differentials are standardized by the phenotypic

variance; Lynch & Walsh 1998).

In an infinite population, Eqn. 1 could be used to cal-

culate s exactly. However, stochastic processes (e.g. ran-

dom mortality) in finite populations compound allele

frequency changes due to drift and selection, making

statistical inference of s necessary and adding uncer-

tainty to estimates of selection. Thus, it is necessary to

account for the possible contribution of drift to

observed changes in allele frequencies. We present sim-

ple simulations in the online supplemental material

(OSM) to illustrate this point, namely that genetic drift

can cause substantial changes in allele frequency that

can be misinterpreted as evidence of selection (distin-

guishing drift from selection is also an issue for pheno-

typic studies, although this is often not discussed).

Given this consideration, maximum-likelihood or

Bayesian methods can be used to obtain interval esti-

mates of s from genetic data under an appropriate

stochastic model that allows drift and selection to con-

tribute to allele frequency change (e.g. Wright-Fisher or

Moran models with selection; Ewens 2004). Addition-

ally, randomization or simulation-based methods can be

used to test the null hypothesis that s = 0 for a particu-

lar locus, as was done by Gompert et al. (2014) in their

null model 1, or to test the global null hypothesis that

s = 0 for all genetic loci (i.e. that selection did not affect

any of the genetic loci). This can be done by comparing

the number of loci with significant evidence of selection

to the number expected by chance under the global null

(Gompert et al. 2014). Note, however, that the failure to

reject null models of locus-specific or genome-wide drift

is not evidence for the absence of selection, and thus,

this does not mean that s = 0 (most genetic loci will

exhibit at least very low levels of LD with some causal

variants in any finite population, and thus, the vast

majority of cases where these null models cannot be

rejected will represent type II errors; Gompert 2016).

We discuss these issues in more detail in the OSM (see

‘Total Selection’).

These concerns related to parsing the contributions of

drift and selection apply to inference of direct selection

as well, but methods for estimating direct selection

must additionally account for correlations among geno-

types at different loci. Lande & Arnold (1983) proposed

using multiple regression to solve the problem of trait

correlations in phenotypic studies. Their approach

works well as long as correlations among variables are

not too strong and the number of observations (individ-

uals) exceeds the number of traits (i.e. for p < n). Their

approach still generally assumes that all relevant traits

have been measured, which would be equivalent to

assuming all causal variants have been assayed in geno-

mic studies (the latter will rarely be true; we discuss

the implications of this below). Using their approach,

partial regression coefficients provide measures of

direct selection (Lande & Arnold 1983). More specifi-

cally, for bi-allelic loci with genotypes coded as 0, 1 or

2 copies of an allele, a partial regression coefficient, b,
equals 1

2 s
D, where sD is defined similarly to s but only

includes direct selection on the genotype (here we

assume perfect additivity, that is h = 0.5). When a rela-

tively small number of genes or genomic regions are of

interest, studies can be designed so that the number of

individuals exceeds the number of genetic loci, and

thus, standard multiple regression approaches could be

used to estimate sD (e.g. the major effect gene Eda in

sticklebacks; Rennison et al. 2015). However, this will

rarely be true for larger population genomic data sets

(in such cases p ≫ n).

Bayesian sparse linear mixed models can be applied

even when p > n by adopting shrinkage or sparsity-

inducing priors, which pull parameter estimates back

towards zero (e.g. Bernardo et al. 2003; P�erez et al.

2010; Guan & Stephens 2011). This class of methods

includes polygenic models and whole-genome regres-

sion approaches that have been successfully applied in

genome-wide association studies (GWASs) and for

genomic prediction and genomic selection in plant and

animal breeding (e.g. Meuwissen et al. 2001; Goddard &

Hayes 2007; Heffner et al. 2008; Hayes et al. 2009;

Resende et al. 2012; Zhou et al. 2013; Thomasen et al.

2014). Inference of direct selection can be approached in
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the same manner as mapping a phenotypic trait but

with fitness or some component of fitness as the pheno-

type. Thus, all of the lessons we have learned from

decades of GWASs, such as the need for large sample

sizes, apply here (e.g. Visscher et al. 2012). We advance

this existing knowledge by focusing on conditions most

relevant for detecting selection, that is, cases where the

phenotype (fitness) has a low to moderate heritability

and diffuse genetic architecture, and by considering

genome-level summaries and locus-specific measures of

selection.

Here, we focus on and describe one such model, the

BSLMM proposed by Zhou et al. (2013), which is part

of the GEMMA software package. We show how BSLMMs

can be used to estimate direct selection when numerous

(tens or hundreds of thousands) genetic loci have been

sequenced, while also providing higher-level summaries

of the genetic architecture of fitness, such as the number

of loci with measurable effects on fitness. The latter

information is extracted from a few key parameters in

the model (caveats and limitations of these parameters

are discussed below).

Bayesian sparse linear mixed models consider the

joint influence of all genetic loci on phenotype (Zhou

et al. 2013). These models assume phenotype, or in this

case fitness, is related to multilocus genotype, such that,

y ¼ 1nlþXbþ uþ e ð2Þ
where y is the vector of observed fitness values (either

0 and 1 for binary outcomes such as dead vs. alive and

mated vs. unmated, or a continuous metric such as sur-

vival time or seed set), l is an intercept and e is a n

vector of error terms (this captures randomness and the

effect of the environment on fitness). X is a matrix of p

genotypes for n individuals, which are generally coded

as 0, 1 or 2 copies of an allele, and b is a vector of (par-

tial) regression coefficients. Thus, b is analogous to

Lande & Arnold’s (1983) selection gradient and repre-

sents the measurable effects of genotypes on fitness (i.e.

direct selection). Here, we use the term measurable to

mean effects that are decidedly noninfinitesimal. To

make the model identifiable, the regression coefficients

are modelled as coming from a mixture of a normal dis-

tribution with unknown variance and a point mass at 0

(this is a shrinkage or sparsity-inducing prior). Analysis

using Bayesian variable selection generates posterior

inclusion probabilities (PIPs) for each genetic locus,

which provide the probability of measurable, direct

selection on the locus. Bayesian model averaging can

then be used obtain estimates of sD (direct selection)

that account for uncertainty in whether sD ¼ 0 (we

refer to these estimates as �b, whereas estimates that

assume sD 6¼ 0 are denoted b̂). Depending on the nature

and sparsity of the genetic data, some, most or all of

the causal variants may not be sequenced, particularly

with reduced representation sequencing methods (e.g.

GBS, RADseq, exome sequencing, etc.; Tiffin & Ross-

Ibarra 2014). However, direct selection on the causal

variants can still potentially be accounted for through

LD with other variants (Fig. 2). Here, we are really

using indirect selection on a locus linked to the (un-

sequenced) causal variant as a proxy for direct selection

on the missing causal variant. Nonetheless, this can be

conceptualized as an estimate of direct selection in the

sense that the effects of other (i.e. correlated and

sequenced) genetic loci have been accounted for (i.e. the

Fig. 2 Graphical depiction of total and direct selection when

causal variants are not sequenced in an empirical study. The

top image (‘selection on all loci’) shows selection on a series of

genetic variants. The horizontal line denotes a chromosome,

vertical bars correspond to variants with (peach) or without

(black) effects on fitness, and vertical arrows indicate the mag-

nitude of selection. In the next two images, information is pre-

sented for the subset of variants that were sequenced; the

causal variant was not sequenced but its position is noted with

a dashed line. The middle image shows that all genetic mark-

ers in LD with the causal variant experienced indirect selection

(‘total selection on sequenced variants’). Whereas, the bottom

image shows that, at least in this example, direct selection on

the un-sequenced causal variant is fully accounted for as direct

selection on the genetic variant most associated with the un-

sequenced causal variant (‘indirect selection on sequenced vari-

ants as a proxy for direct selection’). Because of imperfect LD,

the strength of direct selection on the missing causal variant is

underestimated, but the number of causal variants (one) is cor-

rectly inferred.
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only indirect effects are those coming from missing

loci). This issue is conceptually similar to the issue of

inference of direct selection on phenotypes when not all

phenotypes have been measured (Lande & Arnold

1983).

When fitness is determined by a large number of loci

with very small or near infinitesimal effects, the contri-

bution of this genetic variation to fitness might not be

captured by the vector or partial regression coefficients,

b. However, even in this case, genetic variation for fit-

ness (and thus the full contribution of direct selection to

variation in realized fitness) can be inferred using infor-

mation from the overall genetic similarity among indi-

viduals. In Eqn. 2, this is accounted for by the vector u,

which denotes each individual’s deviation from the

mean expected fitness based on their complete multilo-

cus genotype. More specifically, a multivariate normal

prior is placed on u with a variance–covariance matrix

that is proportional to the genetic similarity or kinship

matrix, which is calculated from the data and treated as

a constant in the model; u is then inferred from the

data given this prior.

Thus, similar to classic quantitative genetic

approaches, the model includes overall relatedness as a

potential predictor of similarity in fitness (Lynch &

Walsh 1998). In contrast to quantitative genetic

approaches, controlled crosses with specific breeding

designs are not required, and thus, BSLMMs can be

used in systems were controlled crosses are not practi-

cal or ethical. Nonetheless, breeding designs will affect

the structure of the kinship matrix and amount of LD

in the population, and patterns of relatedness can affect

the efficacy of the method (see our results below). Thus,

different experimental designs might be preferable for

specific research questions (we discuss this point in

detail below). The kinship matrix also serves to control

for population structure and can often do so more effec-

tively than including population structure covariates

(Zhao et al. 2007; Kang et al. 2008).

The hierarchical nature of the model provides a

means to estimate parameters that summarize direct

selection across the genome (Guan & Stephens 2011;

Zhou et al. 2013). These include the proportion of varia-

tion in fitness explained by all of the genetic data (PVE)

through �b and u (PVE should approach narrow-sense

heritability with sufficient genetic sampling), the pro-

portion of the PVE explained by genetic loci with mea-

surable effects (via the �b), which is denoted PGE, and

the number of genetic variants with measurable effects

on fitness (denoted n-c). These metrics incorporate

uncertainty in the specific genetic variants under selec-

tion, meaning that accurate estimates of these parame-

ters should be possible even if the specific targets of

direct selection cannot be localized. This is important,

as these parameters alone can provide important infor-

mation about genetic variation for fitness. Moreover, in

some systems, such as hybrid zones, variation in fitness

reflects components of reproductive isolation (e.g.

hybrid inviability) making these measures relevant for

studies of speciation.

However, inference of these parameters is affected by

the extent to which causal variants are effectively

tagged by LD with sequenced variants, such that PVE

and n-c will only approach the true heritability and

number of causal variants if all or most causal variants

are in LD with sequenced variants. This will of course

depend on the sparsity of the genetic data, general pat-

terns of LD and the extent to which causal variants and

sequenced variants have similar allele frequencies (Viss-

cher et al. 2012). More generally, the performance of

BSLMMs for detecting selection will depend on numer-

ous factors that can usefully be explored with simulated

data (as in this study).

Simulations of fitness data

We generated and analysed data sets to assess the

potential and limits of BSLMMs to quantify direct selec-

tion under different sampling designs and with differ-

ent genetic architectures. The performance of this

method has been evaluated in the context of genomic

prediction and inference of PVE (Zhou et al. 2013). Our

goal here was to also evaluate performance in terms of

partial regression coefficients (i.e. measures of direct

selection on individual genotypes in our current formu-

lation) and to examine performance under conditions

that are more relevant for studies of genome-wide selec-

tion in the wild, namely low to moderate heritability

and diffuse genetic architectures for fitness (Mousseau

& Roff 1987; Kruuk et al. 2000; Hoffmann et al. 2016).

We also considered sample sizes that, while reasonably

large, are more realistic for studies of natural popula-

tions (compared to sample sizes that might be obtain-

able for studies of human disease).

Fitness data sets were simulated under a variety of

conditions and analysed using the BSLMM imple-

mented in GEMMA. We considered accuracy of inference

with respect to individual estimates of sD and sum-

maries of the genetic basis of variation in fitness (e.g.

PVE). We used previously generated genotyping-by-

sequencing (GBS) genotype data as the starting point

for simulations of fitness values. That is, we assigned

selection coefficients to GBS genotypes and used these

to compute the expected fitness for each individual

based on the GBS data. This approach was used

because it captures realistic patterns of genetic variation

and linkage disequilibrium. We did not make inferences

about selection in these specific species or populations
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(i.e. the fitness values were assigned by us in the afore-

mentioned simulation context). Although we used GBS

data, BSLMM could be used with whole-genome

sequences, or even data sets that include a mixture of

SNPs and structural variants. Our primary genetic data

set included 592 Timema cristinae stick insects collected

from a single population with genotypes for 246 258

SNPs (mean minor allele frequency = 0.09). A full

description of these data can be found in Comeault

et al. (2015). We first considered a quantitative metric of

fitness (e.g. adult weight, longevity, seed set, flower

number, etc.).

We initially simulated 50 replicate data sets with a

narrow-sense heritability of fitness (h2) of 0.3 or 0.05

and with 10, 100 or 1000 causal variants (we use L to

denote the number of causal variants). We sampled the

fitness effect of each causal variant from a standard nor-

mal distribution and assumed that the causal variants

affected fitness additively with incomplete dominance

(h=0.5). Causal variants were chosen randomly from the

set of genotyped SNPs and used to calculate expected

fitness values. We then analysed each data set with and

without the causal variants included as potential covari-

ates in the model. We did this because many causal

variants will not be sequenced with partial genome

sequencing approaches (Tiffin & Ross-Ibarra 2014), such

as GBS, but can still potentially be accounted for

through LD with other variants. As mentioned previ-

ously, when causal variants are missing from the data

set, we are really measuring indirect selection on a

linked locus as a proxy for direct selection on the miss-

ing causal variant.

Additional simulations were conducted to further test

how different conditions influence the efficacy of this

method. First, the simulations described above were

repeated using a binary metric of fitness, such as sur-

vival. We converted each individual’s quantitative score

into a binary score by assuming that 50% of individuals

with the highest quantitative score had a viability of 1,

whereas the rest of the individuals had a viability of 0.

Another set of simulations assessed the performance

improvement through increased sample size (i.e. larger

n). We sampled 2500 individuals from the set of geno-

typed individuals with replacement and then simulated

phenotypic data as described above for the initial set of

simulations, but without the 1000 causal variants treat-

ment. Genotypes (i.e. individuals) were replicated to

obtain this sample size; this alters the structure of the

kinship matrix and could affect performance indepen-

dent of sample size. To test the effect of replicating

genotypes (vs. increasing sample sizes), we generated

another series of data sets where we randomly chose

148 of the 592 individuals and replicated them each

four times (with N kept constant at 592). This also

allowed us to evaluate the benefits and costs of more

structured experimental designs (e.g. experiments

involving full or half-sib families or even clones).

We simulated a final series of fitness data sets using

GBS data from Rhagoletis pomonella (Dryad doi:10.5061/

dryad.mb2tj). These data were described by Egan et al.

(2015). Whereas this was a smaller data set (149 individ-

uals and 33 723 SNPs), it is of interest because inversion

polymorphisms result in large blocks of elevated LD,

and more generally, LD is higher in R. pomonella (e.g.

significant LD often extends beyond 10 cM) than in T.

cristinae [e.g. average LD between SNPs ranges from

0.007 (SNPs < 100 bp apart) to 0.004 (SNPs > 100 bp

apart); Feder et al. 2003; Gompert et al. 2014; Egan et al.

2015]. Thus, it allowed us to ask whether increased LD

offset the negative effect of a smaller sample size (for

simplicity, we focus on the effect on PVE and n-c). To
this end, we replicated genotypes in a subset of simula-

tions to obtain the same sample size as we had for the

T. cristinae data (N = 592 individuals). Note that higher

levels of LD generally make it easier to tag causal vari-

ants, but more difficult to localize them (see, e.g. Riese-

berg & Buerkle 2002), and that LD should in general

improve estimates of PVE as this only requires tagging

causal variants. As with the initial set of simulations,

we generated replicate data sets with h2 equal to 0.3 or

0.05 and 10, 100 or 1000 causal variants (we only con-

sidered a quantitative metric of fitness, and only 10 or

100 causal variants for the simulations with 592 individ-

uals).

Analyses of the simulated data

We fit a BSLMM for each data set using GEMMA with

two replicate MCMC runs, each with a 1 million itera-

tion burnin, 2 million sampling iterations and a thin-

ning interval of 100. Kinship matrixes were calculated

as K ¼ 1
pXXT , where X is the matrix of genotypic data

and p is the number of loci.

We quantified the evidence of direct selection on

individual SNPs based on posterior inclusion probabili-

ties, model-averaged estimates of selection (�b ¼ 1
2 s

D)

and point estimates of b assuming b 6¼ 0 (denoted b̂).
Both estimates of selection coefficients account for cor-

relations among genotypes at different loci. We then

assessed performance based on the correlation between

true and inferred selection coefficients and the normal-

ized root-mean-square error (RMSE; normalized by the

range of b). SNP effects were only considered for data

sets that included the causal variants to make compar-

isons with true results readily interpretable.

We summarized posterior distributions for genetic

architecture parameters (we focused mostly on PVE

and n-c, but also present estimates of PGE) based on
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the posterior mode and the 90% highest posterior den-

sity interval (HPDI), as calculated with the R package

CODA. The accuracy and precision of these parameter

estimates were then quantified based on the RMSE and

90% HPDI coverage, where the latter is the proportion

of the time that the true parameter value was included

in the 90% HPDIs. Thus, lower RMSE and higher 90%

HPDI coverage equate to greater accuracy and precision

of the BSLMM approach for inferring our parameters of

interest.

Results

Estimating direct selection

Under most conditions, partial regression coefficients

(i.e. measures of direct selection or 1
2 s

D) were only

weakly correlated with their true values (Fig. 3), such

that distribution of true vs. estimated effect sizes dif-

fered (Fig. 4). A notable exception occurred when fit-

ness had a high heritability (h2 ¼ 0:3) and was

determined by a modest number of variants (L = 10).

Under these conditions, estimates of selection (�b) were

highly correlated with their true values (mean r = 0.73,

SD = 0.16) and the inferred and true effect size distribu-

tions were similar (Fig. 4c). Correlations between true

and estimated effects were also higher when only cau-

sal variants were considered (Fig. 3), or when the sam-

ple size was increased to 2500 (Fig. S1, Supporting

information). In contrast, replicating genotypes (without

increasing N) caused a decrease in correlations between

true and inferred measures of selection (Fig. S2, Sup-

porting information).

The mean posterior inclusion probability (PIP) for

causal variants was relatively high for h2 ¼ 0:3 and

L = 10 (0.26, SD = 0.10), but was near-zero for more

(a) (b) (c)

(d) (e) (f)

Fig. 3 Violin plots summarize the distribution (across data sets) of Pearson correlations between true and estimated regression coeffi-

cients (i.e. measures of direct selection). Results shown here are from the Timema cristinae GBS data with N = 592 (without genotype

replication) and a quantitative fitness metric. Results for different genetic architectures (i.e. h2 = narrow-sense heritability and

L = number of causal variants) are shown in each panel. Correlations for different combinations of h2 and L are shown in different

panels. Correlations were calculated for model-average (�b) and raw (b̂) estimates of direct selection and were calculated based on all

SNPs or only the causal variants. [Colour figure can be viewed at wileyonlinelibrary.com]
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diffuse genetic architectures or when h2 was low

(Fig. 5a). Average PIPs for causal variants nearly dou-

bled when the sample size was increased from 592 to

2500 individuals (0.48 for h2 = 0.3 and L = 10, and 0.13

for h2 ¼ 0:05 and L = 10; Fig. 5b), but decreased nota-

bly when genotypes were replicated without increasing

N (Fig. 5c). The accuracy of estimates of direct selection

was also affected by the genetic architecture of fitness

and the estimator used. For example, estimates of par-

tial regression coefficients were the least accurate (i.e.

had the greatest RMSE) when data sets were simulated

with diffuse genetic architectures or when point esti-

mates of selection (b̂) were used rather than model-

averaged estimates (�b; Fig. S3, Supporting information).

As with other metrics, increasing sample size to 2500

resulted in a decline in normalized RMSE (Fig. S4, Sup-

porting information), but using replicated genotypes

while keeping the sample size at 592 increased normal-

ized RMSE (Fig. S5, Supporting information).

Quantitative estimation of genetic variation for fitness

Even with moderately large sample sizes (e.g. 100s of

individuals), considerable uncertainty was observed for

estimates of the proportion of variation in fitness

explained by the genetic data (PVE) and the number of

causal variants with measurable effects (n-c; e.g. Figs

S6, S7, S8, Supporting information). Despite this overall

lack of precision, posterior point estimates of PVE were

reasonably accurate (e.g. for the T. cristinae data with

N = 592, RMSE varied from 0.06 to 0.23; Table 2, Fig. 6).

The accuracy of point estimates increased with sample

size and replication of individual genotypes, with much

lower RMSE (and higher 90% HPDI coverage) for

(a) (b) (c)

(d) (e) (f)

True effect True effect True effect

Fig. 4 Quantile–quantile plots compare distributions of true (simulated) and estimated effect sizes. Each grey line corresponds to a

single simulated data set. Results shown here are based on the Timema cristinae GBS data set with N = 592 (without genotype replica-

tion) and a quantitative fitness metric. Results for different genetic architectures (i.e. h2 = narrow-sense heritability and L = number

of causal variants) are shown in each panel (50 replicate data sets per conditions). One-to-one diagonal lines are included for refer-

ence. Effect size distributions for each simulated data set were obtained by averaging distributions over ten random draws from the

posterior distribution of the GEMMA model parameters c and b. [Colour figure can be viewed at wileyonlinelibrary.com]
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N = 2500 or N = 592 with replicates than N = 592 with

unique genotypes (0.01 to 0.02 for N = 2500 compared

to 0.09 to 0.19 for similar conditions with N = 592;

Table 2, Fig. S9, Supporting information).

The proportion of variation in fitness explained by

the genetic data was often lower for binary fitness met-

rics than for quantitative fitness metrics, although this

did not have a consistent effect on accuracy (i.e. in

some cases, this gave better estimates as results for the

quantitative metric were upwardly biased; Table 2;

Fig. S10a, Supporting information). Simulations based

on the R. pomonella data gave more variable and less

accurate estimates of PVE than did those from T. cristi-

nae, particularly with h2 ¼ 0:3 and L = 100 or 1000

(Table S1; Fig. S10b, Supporting information). How-

ever, results based on the R. pomonella data were simi-

lar to T. cristinae when we replicated genotypes to

obtain the same sample sizes, suggesting that the

poorer performance with the R. pomonella data was

due to low sample sizes rather than high LD

(Table S1; Fig. S10, Supporting information). In total,

90% HPDIs for PVE generally included the true

parameter value (the worst performance was observed

for binary metrics; Table 2).

(a)

(b)

(c)

Fig. 5 Violin plots summarize the distri-

bution (across data sets) of posterior

inclusion probabilities (PIPs) for causal

variants, that is for variants directly

affecting fitness. Results are shown for

the Timema cristinae GBS data with a

quantitative fitness metric with different

sampling sizes and schemes (a–c) and

genetic architectures (i.e. values of h2 =
narrow-sense heritability and L = number

of causal variants). [Colour figure can be

viewed at wileyonlinelibrary.com]
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Estimation of the number of casual variants

Performance was notably poorer in terms of estimating

the number of causal variants (i.e. for inference of n-c
compared to PVE), but these results were also more dif-

ficult to interpret (Table 2, S1, Supporting information).

Specifically, we seldom found evidence for greater than

10 variants with measurable effects on fitness, regard-

less of conditions (the greatest exception was for the

case of 100 causal variants with h2 ¼ 0:3 and N = 2500;

Table 2). Thus, estimates of n-c were mostly (but not

entirely) independent of simulation conditions (i.e. of

the true parameter values). However, because the mag-

nitude of fitness effects varied among causal variation

(which were normally distributed) and many had very

small effects (this is particularly true for the case where

1000 variants explained only 5% of the variation in

fitness), not all of these variants necessarily had

‘measurable’ effects on fitness and many were likely

subsumed in the polygenic term (i.e. via their contribu-

tion to overall genetic similarity captured by the kinship

matrix).

This interpretation is consistent with the fact that our

estimates of PVE were fairly accurate, and that the pro-

portion of the PVE that was attributable to loci with

measurable, rather than infinitesimal effects (PGE in

GEMMA) decreased with the number of causal variants.

For example, mean estimates of PGE based on the

Timema data with h2 ¼ 0:3 were 0.79, 0.41 and 0.03 for

simulations with L = 10, 100 and 1000, respectively.

Also in support of this, SNP posterior inclusion proba-

bilities (PIPs), which measure the probability a locus

has a measurable effect on fitness and are the basis for

estimates of the number of causal variants (n-c), were

positively correlated with effect sizes. Average

Table 2 Accuracy of genome-level parameter estimates under different conditions

h2 No. loci Metric Causal N

PVE No. SNPs

Estimate RMSE 90% cov. Estimate RMSE 90% cov.

0.3 1000 Quantitative True 592 0.26 0.20 0.92 8.7 991.7 0.00

0.3 100 Quantitative True 592 0.34 0.19 0.86 18.3 85.6 0.84

0.3 10 Quantitative True 592 0.39 0.14 0.80 7.3 5.6 0.88

0.05 1000 Quantitative True 592 0.09 0.14 0.96 3.5 996.5 0.00

0.05 100 Quantitative True 592 0.08 0.09 0.98 3.6 96.4 0.82

0.05 10 Quantitative True 592 0.07 0.09 0.94 3.5 6.6 1.00

0.3 1000 Binary True 592 0.12 0.23 0.72 8.8 991.8 0.00

0.3 100 Binary True 592 0.16 0.18 0.84 4.6 95.4 0.74

0.3 10 Binary True 592 0.26 0.15 0.90 6.0 7.0 0.94

0.05 1000 Binary True 592 0.05 0.06 1.00 3.8 996.2 0.00

0.05 100 Binary True 592 0.05 0.07 0.96 3.6 96.4 0.83

0.05 10 Binary True 592 0.07 0.10 0.96 4.1 6.1 1.00

0.3 100 Quantitative True 2500 0.30 0.02 0.90 63.2 45.3 0.62

0.3 10 Quantitative True 2500 0.31 0.02 0.90 7.2 3.7 0.78

0.05 100 Quantitative True 2500 0.05 0.02 0.80 9.1 99.1 0.68

0.05 10 Quantitative True 2500 0.05 0.01 0.94 3.9 6.8 0.84

0.3 100 Quantitative True 592.
a 0.31 0.03 0.96 4.8 99.5 0.74

0.3 10 Quantitative True 592.
a 0.30 0.05 0.84 4.3 6.1 0.74

0.05 100 Quantitative True 592.
a 0.05 0.03 0.92 3.3 96.7 0.66

0.05 10 Quantitative True 592.
a 0.04 0.03 0.88 3.0 7.1 1.00

0.3 1000 Quantitative False 592 0.24 0.19 0.88 4.2 995.8 0.00

0.3 100 Quantitative False 592 0.25 0.19 0.94 5.2 94.9 0.92

0.3 10 Quantitative False 592 0.26 0.19 0.92 3.8 6.4 0.98

0.05 1000 Quantitative False 592 0.08 0.14 0.96 3.6 996.5 0.00

0.05 100 Quantitative False 592 0.08 0.10 0.98 3.8 96.4 0.82

0.05 10 Quantitative False 592 0.07 0.09 0.96 3.5 6.4 1.00

Results are shown for data sets generated from the T. cristinae genetic data; see (Table S1, Supporting information) for results from

the R. pomonella data. Average metrics across replicates are reported with and without causal variants included in the analysis. ‘esti-

mate’ denotes the point estimate of the parameter (posterior mode), ‘RMSE’ is the root-mean-square error, and ‘90% cov.’ gives the

proportion of times the true parameter value was included in the 90% HPDIs. ‘no. loci’ gives the actual number of causal variants

(L), whereas ‘no. SNPs’ refers to the number of causal variants inferred from the model. ‘N’ is the sample size (N) and a denotes

cases where genotypes were replicated (see the main text for details).
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correlations (Pearson’s r values) between PIPs and effect

sizes for these same data sets were 0.61 (L = 10), 0.27

(L = 100) and 0.05 (L = 1000).

Discussion

Estimating direct selection

We found that BSLMMs could provide useful informa-

tion about individual bouts of direct selection on

genetic loci under at least some conditions, but that

important and sometimes strong limitations exist. For

example, we showed that reasonably accurate estimates

of selection coefficients could be obtained when sample

sizes were large (N = 2500), the genetic architecture of

fitness was relatively concentrated (L = 10) and fitness

was more heritable (h2 ¼ 0:3). With that said, even

very large sample sizes gave poor estimates of direct

selection when fitness had a diffuse genetic architecture

(e.g. h2 ¼ 0:05 and L = 1000). Thus, when heritability

is low or fitness is highly polygenic, it might not be

practical or even possible to obtain large enough sam-

ples for accurate estimates of direct selection on

individual loci. These results are consistent with the

general finding from GWASs over the past few decades

that large sample sizes are often required but not

always sufficient to map phenotypes for complex or

quantitative traits onto genotypes (Manolio et al. 2009;

Visscher et al. 2012).

Replicating genotypes (while holding N constant)

actually degraded performance with respect to estimat-

ing direct selection. We suspect this occurred because

fewer independent data points were available to isolate

the effects of individual loci on fitness. With this in

mind, our results suggest that experiments designed to

detect direct selection on individual genes should maxi-

mize sample sizes without necessarily attempting to

include multiple individuals from the same family or

replicate clones (when this is an option). In some sys-

tems, it might be possible to obtain larger total sample

sizes by studying multiple experimental populations in

a block design (as in Gompert et al. 2014), perhaps at

the expense of sample sizes within populations or

blocks. Moreover, such replicated block designs could

provide additional information about the consistency of

selection across space or genomic backgrounds. In the

(a)

(c)(b)

Wi
Wi

Fig. 6 Box plots illustrate the distribu-

tion of point estimates for the proportion

of variation in fitness explained by the

genetic data (PVE). We show the distri-

bution of point estimates (posterior

mode) across replicates for different con-

ditions. Dotted red lines indicate the true

parameter value. Panels (a–c) give results

for different sample sizes and schemes.

Results shown here are based on the

Timema cristinae GBS data with a quanti-

tative metric of fitness and a range of

genetic architectures (h2 = narrow-sense

heritability, L = number of causal vari-

ants, N = number of individuals). [Colour

figure can be viewed at wileyonlineli-

brary.com]
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end, the large experiments required to accurately mea-

sure direct selection on genes might benefit from (or

even require) multi-investigator collaborative efforts on

the same scale as those currently used to map human

diseases (e.g. N > 100 000 as in IL6R Genetics Consor-

tium Emerging Risk Factors Collaboration 2012).

In addition to study design, we found that the esti-

mator used to infer selection coefficients mattered. In

particular, we obtained more accurate estimates of

direct selection (lower RMSE and a higher correlation

with the true values) with model-averaged coefficients

(i.e. �b) than with those that assumed a nonzero effect

(i.e. b̂). A notable exception occurred for concentrated

genetic architectures when only considering causal vari-

ants. Here, b̂ consistently outperformed �b with respect

to RMSE and the correlation with the true parameter

value. But, because causal variants will rarely be known

a priori, we still recommend using model-averaged

regression coefficients to estimate direct selection on

genetic loci.

Quantifying genetic variation for fitness

Some key questions about selection can be addressed

directly from statistical summaries of direct selection at

the genome-level (e.g. via the model parameters PVE,

PGE and n-c). When the heritability of fitness is low or

fitness is highly polygenic, focusing on these questions

and parameters might be the most productive way for-

ward (Rockman 2012). For example, estimates of PVE

can be converted into measures of additive genetic vari-

ation for fitness and these could be productively com-

pared across environments, populations or fitness

components. In turn, these measures are of interest for

studies of speciation as genetic variation for fitness

determines the evolutionary response to selection and

thereby affects the possibility for colonization of new

habitats. Whereas such information could also be

obtained using traditional quantitative genetic breeding

designs (Falconer & Mackay 1996), these methods are

not practical for many nonmodel organisms.

We found that fairly accurate estimates of PVE could

be obtained under a wider variety of conditions than

estimates of direct selection on genes. The accuracy of

PVE point estimates was determined mostly by sample

size (bigger was of course better) and whether or not

genotypes were replicated. Specifically and in contrast

to the results for estimating selection coefficients (see

above), replication of genotypes increased the accuracy

of PVE estimates, likely by both increasing LD and

increasing the explanatory power of overall genetic sim-

ilarity. Thus, when possible, studies designed to esti-

mate PVE should include replicate clones or inbred

lines. Note, however, that this will come at the cost of

decreasing one’s ability to parse individual genotypic

effects (compared to an analysis of the same number of

unrelated individuals). When clones are not available,

other structured designs, such as studies of siblings or

hybrids, should have a similar albeit less pronounced

effect. Because structured designs increase LD and

thereby make it easier to tag a greater proportion of

causal variants with fewer sequenced loci, they could

be particularly appropriate when generating GBS data.

Unfortunately, n-c was routinely underestimated,

particularly when L was large, although performance

did improve with N = 2500. This however does not nec-

essarily reflect a failure of the method, as the effects of

many causal variants were simply subsumed in the

polygenic term when the number of causal variants was

large. As such, these smaller effect causal variants did

not contribute to estimates n-c. Nonetheless, based on

our results, estimates of n-c should be interpreted with

extreme caution.

Additional considerations and future directions

Further refinements and extensions of BSLMMs have

the potential to increase the utility of these models for

studying direct selection. For example, current BSLMMs

do not account for dominance or epistasis, which are

central to many theories of speciation (e.g. Orr 1995;

Turelli & Orr 2000; Gavrilets 2004; Orr 2005). Domi-

nance can readily be incorporated into whole-genome

regression models, such as BSLMMs, and the same is

true in principle for epistasis but the number of geno-

type combinations present a daunting, but not insur-

mountable, computational challenge (Zhang & Liu 2007;

Jiang et al. 2009; Wang et al. 2010; Ritchie , 2011, 2015).

Our understanding of speciation would benefit from

measures of selection that explicitly incorporate geno-

type–environment interactions or that tie selection to

trait genetics. Genotype–environment interactions for

fitness are central to ecological speciation and have

been tested for in many studies, but often by post hoc

comparisons rather than formal inference within a

model (e.g. Gompert et al. 2014). With that said, adding

additional model parameters for genotype–environment

interactions or epistasis will further increase the sample

size required for accurate inferences. Thus, trade-offs

exist between extending the realism of models and

obtaining reliable estimates of parameters with limited

sample sizes. Notably, methods now exist that take trait

architectures into account when testing for selection

based on spatial patterns of genetic variation (Berg &

Coop 2014). Similar approaches could be used to pow-

erfully connect fitness to phenotype and genotype in

short-term studies of selection, and doing so should not

entail a cost (unlike adding epistasis) as this would
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decrease the number of free parameters in the model.

Such an integrative framework has the potential to truly

advance our understanding of the causes and dynamics

of speciation in nature.

Beyond methodological refinements, progress in

understanding selection’s role in speciation can be made

by combining information from studies of direct selection

with genome scans of natural populations or even long-

term evolve and resequence experiments. Population

genomic methods (e.g. FST outlier analyses and tests for

allele frequency–environment correlations; Beaumont &

Balding 2004; Foll & Gaggiotti 2008; Coop et al. 2010;

G€unther & Coop 2013) gain power to detect selection by

compounding the evolutionary consequences of selection

over many generations (Lewontin & Krakauer 1973).

However, such approaches rarely provide actual esti-

mates of selection (Thurman & Barrett 2016), do not parse

direct vs. indirect selection and can be confounded by

demographic processes (Excoffier et al. 2009). In contrast,

short-term studies of direct selection can employ experi-

mental designs where demography is known precisely

and where processes other than selection and drift (e.g.

gene flow, mutation and recombination) are eliminated

(e.g. Gompert et al. 2014). Consistency of patterns

between these types of studies would implicate direct

selection as a key driver of divergence and suggest selec-

tion has acted in a consistent manner through time. Con-

versely, a lack of consistency could suggest

methodological shortcomings, indicate a greater role for

other evolutionary processes (such as drift and linked

selection) or show that selection or LD varies through

time. Such temporal variation in selection has been

detected in phenotypic and genetic studies (Barrett et al.

2008; Siepielski et al. 2009; Anderson et al. 2014; Bergland

et al. 2014; Thurman & Barrett 2016), but has rarely been

incorporated into models of speciation.

Evolve and resequence experiments provide a power-

ful means to measure selection by compounding infor-

mation over many generations (e.g. Cooper et al. 2003;

Blount et al. 2008; Burke, et al. 2010, 2014; Long et al.

2015; Gompert & Messina 2016), and could be used to

distinguish between direct and indirect selection (using,

e.g. ‘driver’ ‘passenger’ models as in Illingworth &

Mustonen 2011). However, such studies have been

mostly restricted to organisms with short generation

times that can be maintained in the laboratory (e.g.

viruses, bacteria, yeast and Drosophila), and laboratory

conditions may fail to capture the complexity of nature.

In contrast, experiments that measure one or several

bouts of selection within a generation can be conducted

with a greater diversity of organisms under natural or

semi-natural conditions. Indeed, hundreds or even

thousands of such within-generation estimates of phe-

notypic selection have increased our awareness of how

variable selection can be across traits, time periods and

populations, and refinement of this awareness continues

(Kingsolver et al. 2001; Siepielski et al. 2009). It will thus

be important to recognize when multigeneration experi-

ments are needed (e.g. to measure the effect size distri-

bution of mutations fixed during a bout of adaptation),

vs. when replicated within-generation experiments

might be more productive (e.g. to contrast directions of

selection on genotypes across a suite of environments

or to distinguish between mechanisms by eliminating

mutation, recombination). When possible, short-term

measures of selection should be compared to results

from longer-term evolve and resequence experiments

on the same species to determine whether the former

can be extrapolated to predict evolutionary trajectories

over greater timescales (which are clearly relevant for

speciation).

Alternative approaches

Some questions in speciation can only be addressed by

disentangling direct and indirect selection. For example,

measures of direct selection are most relevant for identi-

fying the specific genes or alleles that cause reproduc-

tive isolation. Nonetheless and despite our focus on

direct selection in this manuscript, there are cases

where the combined effects of direct and indirect selec-

tion (i.e. total selection) are of interest and thus where

the ‘problem’ of correlated genetic loci disappears.

First, the expected genomic response to an episode of

selection (i.e. genome wide changes in genotype and

gamete frequencies) is dictated by total selection, not

direct selection alone. This means that evolutionary

change from one generation to the next is best predicted

from total selection. With that said, longer-term predic-

tions will only be valid if LD is maintained through

time, for example by tight physical linkage or by selec-

tion and gene flow as can occur in hybrid zones (Barton

& Hewitt 1985). Otherwise, patterns of LD will change

via recombination and changes in allele or haplotype

frequencies.

Second, several important evolutionary phenomena

depend on the total selection experienced by genetic

loci each generation (i.e. direct selection and LD with

causal variants), including genetic hitchhiking (May-

nard-Smith & Haigh 1974), genome-wide congealing

during speciation with gene flow (Flaxman, et al. 2013,

2014) and the reduction in effective gene flow across a

hybrid zone (i.e. the barrier to gene flow; Barton 1983;

Barton & Bengtsson 1986; Gavrilets 2004; Barton & De

Cara 2009). Thus, under a range of conditions, whether

populations can speciate with gene flow or remain dis-

tinct upon secondary contact depends on the total selec-

tion (specifically total selection in the context of
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divergent selection or selection against hybrids) rather

than only direct selection on causal variants (Barton

1983; Flaxman et al. 2014). In conclusion, total selection

matters because it is not always just individual genes

that respond to selection, but potentially sets of genes

or genomes (Lewontin 1974), and thus measures of total

selection provide key information about evolutionary

processes in general, and speciation in particular.
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