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Abstract
Aim: The symbioses between corals and endosymbiotic dinoflagellates have been 
described as a flexible relationship whose dynamics could serve as a source of resil-
ience for coral reef ecosystems. However, the factors that drive the establishment 
and maintenance of this co-evolutionary relationship remain unclear. We examined 
the environmental and geographical factors structuring dinoflagellate communities in 
a wide-ranging Indo-Pacific coral to begin to address this gap.
Location: Djibouti, Oman, Taiwan and French Polynesia.
Taxon: Cauliflower corals (Pocillopora spp.), dinoflagellates (family Symbiodiniaceae).
Methods: We analysed publicly available amplicon sequence data from the nuclear 
ribosomal DNA internal transcribed spacer 2, originating from Pocillopora spp. We 
also compiled environmental data such as sea surface temperature (SST) and time 
since the last local mass bleaching event. We ran generalized least squares models, 
PERMANOVAs and indicator species analyses, to understand how thermal regimes 
and geographical distances impacted Pocillopora spp.'s Symbiodiniaceae community 
composition.
Results: Sea surface temperature was the most important factor driving 
Symbiodiniaceae community differences, with the largest effect size of the statisti-
cally significant factors. When focusing on individual Symbiodiniaceae genera, SST 
was likewise the most important factor. Our indicator species analyses revealed that 
specimens that had recently bleached were characterized by roughly equal propor-
tions of Cladocopium spp. and Durusdinium spp., while specimens that had not recently 
bleached had a similar proportion of Durusdinium spp. as those that had recently 
bleached, but also showed a reduction in Cladocopium spp., with this deficiency made 
up by the presence of Symbiodinium spp.
Main Conclusions: We provide further support for the hypothesis that coral's 
Symbiodiniaceae communities could facilitate host resilience to thermal stress. Our 
work is in direct conversation with a larger body of biogeography literature that high-
lights how local environmental regimes can impact contemporary population struc-
ture, even in marine taxa with widespread distributions.
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1  |  INTRODUC TION

Host–symbiont relationships are increasingly recognized as being 
important for contributing to host tolerance of environmental stress 
(Ainsworth et al., 2010; Dastogeer et al., 2022; Iltis et al., 2022). A 
classic example are reef-building corals (Order Scleractinia), which 
thrive in nutrient-poor, tropical and sub-tropical marine ecosys-
tems due to an ancient, co-evolutionary relationship with photo-
synthetic dinoflagellates from the family Symbiodiniaceae (Campoy 
et al., 2020; Frankowiak et al., 2016; Liu et al., 2018). As atmospheric 
CO2 levels increase due to anthropogenic climate change, corals 
face increasing extinction risk due to rising sea water tempera-
tures driving mass coral bleaching events (Carpenter et al.,  2008; 
Hughes et al.,  2018), which destabilizes the coral–algal symbiosis 
(Hoegh-Guldberg, 1999). Changes in the symbiont communities as-
sociated with coral have been connected to ecological and perfor-
mance shifts in the host–symbiont relationship, potentially assisting 
these corals in coping with repeat thermal stress events (Cunning 
et al., 2015; Glynn et al., 2001; Rodríguez-Román et al., 2006; Rowan 
et al., 1997). However, the specific environmental and geographical 
factors that structure the distribution of symbiont communities are 
not fully understood. Prior studies on the factors structuring ma-
rine invertebrate communities suggest that despite high potential 
for long-distance dispersal with oceanic currents, regional differ-
entiation can often arise in response to local environmental condi-
tions (e.g. Cineas & Dolédec, 2022; Coppard et al., 2021; Hirschfeld 
et al.,  2021; Lessios et al.,  2003; Lim et al.,  2021; Lopes da Silva 
Ferrette et al., 2021; Pappalardo et al., 2015; van der Ven et al., 2021; 
Wepfer et al.,  2020). In particular, the Indo-Pacific has served as 
a key area of study for understanding how current species distri-
butions can be structured by the complex interplay between con-
temporary environmental pressures and historical patterns of gene 
flow (see Benzie, 1999; Crandall et al., 2019; Lessios et al., 2001). 
However, there remains a knowledge gap concerning where and why 
particular Symbiodiniaceae taxa are associated with particular coral 
genera. To date, coral studies have typically focused on the factors 
structuring these symbioses in either a single geographical location 
(Johnston, Cunning, & Burgess, 2022; O'Brien et al., 2020; Osman 
et al.,  2020; Pollock et al.,  2018; Ricci et al.,  2022) or for a single 
Symbiodiniaceae genus at the regional level (Turnham et al., 2021). 
It is important to consider how environmental and geographical fac-
tors together are driving the establishment and maintenance of this 
symbiotic relationship, as the diversity, distribution and stability of 
Symbiodiniaceae communities is central to coral's future in an in-
creasingly warmer, high CO2 world.

Generally, host specificity results in an individual coral being 
in symbiosis with a single Symbiodiniaceae taxon (see LaJeunesse 
et al., 2004; Smith et al., 2017; van Oppen et al., 2001). Given the 

evolutionary distance between taxa, LaJeunesse et al.  (2018) re-
cently reclassified each as its own genus. While many coral spe-
cies often associate with a single Symbiodiniaceae genus, two coral 
genera—Orbicella (Western Atlantic) and Pocillopora (Indo-Pacific)—
regularly host multiple genera, suggesting more labile and poten-
tially adaptive coral–symbiont associations (Cunning et al.,  2013; 
Kemp et al., 2015; Kennedy et al., 2016; Toller et al., 2001; Ziegler 
et al.,  2017). For example, O. faveolata has been shown to be 
most resistant to bleaching when harbouring phylotype A3 (now 
Symbiodinium spp.), and during bleaching events there was an in-
creased presence of this phylotype alongside the D1a phylotype 
(now Durusdinium spp.; Kemp et al., 2014). Within Orbicella spp., the 
length of thermal stress events can also dictate longer-term dynam-
ics of Durusdinium, with D1a phylotypes being most retained after 
14 days versus 7 or 10 days of experimentally induced heat stress 
(Cunning, Bay, et al., 2018). Likewise, cauliflower coral (Pocillopora 
spp.) colonies in Panama (the easternmost part of this genus's 
range) were shown to shift their communities from Cladocopium 
spp. to Durusdinium spp. during the 1997–1998 El Niño–Southern 
Oscillation (ENSO) event (Glynn et al.,  2001). Pocillopora colonies 
dominated by Durusdinium experienced less bleaching and mortal-
ity during the 1997–1998 ENSO thermal bleaching event compared 
to the 1982–1983 ENSO event (Glynn et al., 2001). Pocillopora has 
also been observed to be less susceptible to bleaching during cold-
water events when associated with Durusdinium spp. (LaJeunesse 
et al., 2010). More recently, Pocillopora spp. has been reported to ac-
quire novel Durusdinium and Cladocopium species from the environ-
ment and maintain stable associations for up to 18 months after two 
subsequent bleaching events, suggesting that symbiont community 
changes could be an adaptive and flexible response to environmen-
tal stressors (Boulotte et al., 2016).

Together, data from Orbicella and Pocillopora corals present that 
changes in coral symbiont genera can be linked to environmental 
stress, and that these changes to Symbiodiniaceae communities 
could provide benefits to the coral host. Although there is a con-
siderable body of work that underscores the dynamic nature of 
coral–Symbiodiniaceae partnerships in the face of bleaching (Baker 
et al., 2004; Quigley et al.,  2019; Rowan et al.,  1997), other stud-
ies have highlighted the stability of Symbiodiniaceae communities 
or have suggested that many changes cannot be conclusively linked 
to environmental stressors (Epstein et al.,  2019; Hoegh-Guldberg 
et al.,  2002; Manzello et al.,  2019; McGinley et al.,  2012; Rouzé 
et al., 2019), urging us to consider additional factors that structure 
coral host–symbiont interactions.

In addition to thermal stress and bleaching events, 
Symbiodiniaceae communities can be structured by other abi-
otic and geographical factors, such as dispersal potential and 
adaptation to local abiotic regimes. Previous research has shown 

K E Y W O R D S
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that different oceanic basins possess divergent Symbiodiniaceae 
communities, both free living and in-hospite (LaJeunesse,  2005; 
Manning & Gates,  2008). For example, O. annularis in the 
Caribbean and Bahamas is predominantly associated with the 
genera Breviolum, Cladocopium and Durusdinium (Kennedy 
et al., 2016), while Pocillopora in the Red Sea and Tropical Eastern 
Pacific is predominantly associated with the genera Symbiodinium, 
Cladocopium and Durusdinium (Baker et al.,  2017; LaJeunesse 
et al., 2004; Ziegler et al., 2017). Some Symbiodiniaceae taxa like 
Cladocopium latusorum are found in association with corals across 
the entire Indo-Pacific (Turnham et al.,  2021). In addition, host 
and local environmental regimes, such as sea surface temperature 
(SST), appear to influence coral–Symbiodiniaceae partnerships 
(Cooper et al., 2011; Osman et al., 2020; Tonk et al., 2013), with 
particular genetic lineages more likely to associate with particular 
Symbiodiniaceae genera (Cunning et al.,  2013). It has also been 
noted that Symbiodinium spp. and Breviolum spp. are most com-
mon at higher latitudes, while Cladocopium spp. is more common 
in tropical latitudes (Baker,  2003). The complex interplay be-
tween genera specificity, dispersal and environmental conditions 
represents a challenge for elucidating the factors that structure 
coral–algal symbioses across broad species ranges, particularly 
because most studies focus on local patterns at a single geograph-
ical location.

Pocillopora is a genus of reef-building corals that is widely dis-
tributed across the Indo-Pacific—ranging from the Red Sea to the 
Tropical Eastern Pacific (TEP) in Central and South America—and 
thus provides an excellent system to explore the factors that drive 
patterns of host–Symbiodiniaceae associations across large spatial 
scales and environmental regimes. Pocillopora corals are capable 
of withstanding considerable environmental heterogeneity com-
pared to other coral taxa (Hoegh-Guldberg,  2011). For example, 
Pocillopora corals in the Red Sea are found at extreme salinities up 
to 41 ppt (Paldor & Anati, 1979) and at temperatures above 30°C 
(Fine et al.,  2013). In the TEP, Pocillopora corals experience sea-
sonal upwelling conditions that trigger drastic annual fluctuations 
in abiotic conditions (D'Croz & O'Dea, 2007; O'Dea et al., 2012); 
for instance, corals in the Gulf of Panama experience a 10-degree 
shift in temperature across the non-upwelling and upwelling 
seasons, and as much as a 5-point drop in salinity, among other 
parameters (Manzello et al.,  2008). To date, there has not been 
a study systematically exploring Pocillopora's Symbiodiniaceae 
communities across its range. Given this taxon's symbiont flexi-
bility during thermal stress events and the environment heteroge-
neity encompassed by its range, it represents an ideal system to 
address larger questions regarding the factors structuring coral–
Symbiodiniaceae establishment and maintenance.

In this study, we analysed publicly available Symbiodiniaceae nu-
clear ribosomal DNA internal transcribed spacer 2 (ITS2) sequences 
that spanned study locations across Pocillopora's range to investi-
gate the environmental and geographical factors structuring the 
Symbiodiniaceae communities in this wide-ranging Indo-Pacific coral. 
Given the evidence that bleaching disrupts symbiosis (Ainsworth 

et al.,  2016; Brown,  1997; Carpenter et al.,  2008; Douglas,  2003; 
Glynn,  1996; Hoegh-Guldberg,  1999; Hughes et al.,  2018; 
Weis, 2008) and that migrant establishment may be lower in ther-
mally unsuitable locations relative to locally adapted populations 
(Fitzpatrick et al., 2015; Kelly et al., 2014; Lessios et al., 2001; Nosil 
et al., 2009; Osman et al., 2020), we predicted that a region's ther-
mal history, followed by geography, would most strongly drive host–
symbiont associations. By focusing on a single cosmopolitan genus 
and its algal symbionts, we aim to identify and disentangle the vari-
ous interconnected factors responsible for the establishment and di-
versity of coral–Symbiodiniaceae symbioses, thus providing insights 
into how corals' symbiotic partnerships are structured and poten-
tially impacted by environmental change.

2  |  MATERIAL S AND METHODS

2.1  |  Downloading data

We downloaded all available Symbiodiniaceae ITS2 FASTQ sequence 
files in July 2021 from Pocillopora corals from NCBI's Sequence 
Read Archive (SRA) via the SRA Toolkit on Compute Canada 
(Baldwin, 2012). We also downloaded their associated metadata (i.e. 
publication source, species sampled, location sampled, coordinates 
of sampling location, time of year sampled, ITS2 primers used). We 
used NOAA's Coral Reef Watch Operational Daily Near-Real-Time 
Global 5-km Satellite Coral Bleaching Monitoring Products (NOAA 
Coral Reef Watch,  2000) to extrapolate SST from the study loca-
tions, if this data was not already provided in the associated publica-
tion. Finally, we ascertained the time since the last local bleaching 
event (TSB) by referencing government monitoring program reports 
and scientific publications.

2.2  |  Sequence quality control and amplicon 
sequence variant (ASV) detection

Given the heterogeneous nature of the downloaded files, we used 
the R package ‘DADA2’ version 1.20 (Callahan et al., 2016; https://
github.com/benjj​neb/dada2) to filter and trim the downloaded ITS2 
sequences and detect amplicon sequence variants (ASVs). We used 
an ASV approach rather than detecting and constructing operational 
taxonomic units (OTUs), because ASVs represent sequences that 
are stand-alone, reproducible and informative, as a detected ASV 
is a sequence in and of itself and is not contingent on the nature 
of the clustering approach used (see Callahan et al., 2017). We fol-
lowed a standard DADA2 workflow: we trimmed and de-replicated 
sequences, removed chimeras and generated a FASTA file with our 
detected ASVs. For sample inference, we took a pseudo-pooling ap-
proach as a compromise between processing time and improving the 
detection of low-frequency Symbiodiniaceae ASVs (cf. Silverman 
et al., 2018). We ran our DADA2 R Script on the Compute Canada 
Cedar server.
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2.3  |  Phylogenetic tree

We used FastTree 2 version 2.1.11 (Price et al., 2010) to construct 
a ITS2 phylogenetic tree, which implements a heuristic variant of 
neighbour joining and the Shimodaira–Hasegawa (SH) test to com-
pare alternative topologies with 1000 resamples. For our tree, we 
first used Clustal Omega (Sievers & Higgins, 2021) on the Compute 
Canada Cedar server with default parameters to align our DADA2-
generated FASTA sequences. We then used these aligned sequences 
to build our phylogenetic tree with FastTree 2, using a generalized 
time-reversible model. The support values are SH-like local supports 
(see Price et al., 2010).

2.4  |  Taxonomic assignment

We took two approaches to assign taxonomy to our ASVs using (1) 
the SymPortal database (Hume et al.,  2019) and (2) NCBI BLAST 
(Altschul et al.,  1990; see details below). We selected the taxo-
nomic assignment that most closely matched the phylogenetic tree 
presented in LaJeunesse et al. (2018), which is the most widely ac-
cepted phylogeny of Symbiodiniaceae, where each Symbiodiniaceae 
phylotype is its own clade on the tree; other recent Symbiodiniaceae 
phylogenetic trees have shown concordance with this tree (see 
Teschima et al., 2019; Turnham et al., 2021).

The SymPortal database (Hume et al.,  2019) is a community-
driven Symbiodiniaceae-specific database that uses the ITS2 marker 
and provides ITS ‘clade’ and ‘type’ assignments as it was built be-
fore this family's taxonomic reorganization. Yet, these assignments 
represent ITS2-type profiles and will be referred to as such hereon. 
We downloaded the database and then used vsearch version 2.4.3 
(Rognes et al.,  2016; https://github.com/torog​nes/vsearch) and 
usearch version 11.0 (Edgar, 2010; http://www.drive5.com/usearch) 
to assign taxonomy to our ASV FASTA file generated in DADA2, 
requiring a pairwise identity of at least 0.6. As SymPortal is opti-
mized for the SYM_VAR_5.8S2/SYM_VAR_REV primer pair (Hume 
et al.,  2018, 2019) and our dataset included sequences generated 
using different primers, namely the ITSIntFor2 (LaJeunesse, 2002) 
and ITS2 pair (Coleman et al.,  1994), or the ITS-DINO (Pochon 
et al., 2001) and ITS2Rev2 (Stat et al., 2009) pair, we also assigned 
taxonomy with NCBI BLAST. For NCBI BLAST, we set an E-value cut-
off of 1 × 10−5 and a maximum of 5 target sequences. We manually 
annotated non-Symbiodiniaceae hits as no hits (‘N’) and established 
ITS2-type profiles based on the NCBI output reference entries, 
mirroring the SymPortal output. For ASVs that had multiple ITS2-
type profiles as hits, we selected the one with the smallest E-value, 
least number of mismatches and/or greatest percent alignment. If 
an ASV had two different ITS2-type profiles with the same E-value, 
number of mismatches and percent alignment, we only assigned 
taxonomic resolution down to the genus level. Furthermore, as not 
all Symbiodiniaceae form symbioses with corals (cf. Baker,  2003), 
if an ASV hit did not provide further taxonomic resolution past 
Symbiodiniaceae, it was also denoted as ‘N’. We removed these 

uninformative ASVs before downstream analyses. The SymPortal 
taxonomic assignment is found in Table S4, and the NCBI taxonomic 
assignment in Table S5.

2.5  |  ASV quality control and cumulative sum 
square transformation

All statistical analyses were performed in R version 4.1.2 (R Core 
Team,  2021). Using the R package ‘phyloseq’ version 1.39.1 
(McMurdie & Holmes, 2013; https://github.com/joey7​11/phyloseq), 
we integrated ASVs, taxonomy and sample information into a single 
object. We then performed quality control, including removing taxa 
that had less than 1000 reads, those that were observed less than 
once in at least 5% of the specimens, and removing any singleton 
ASVs. We performed a cumulative sum square (CSS) transforma-
tion, as opposed to rarefying Symbiodiniaceae reads, to avoid omit-
ting data whose differences in library size and presence/absence 
of particular ASVs may be of biological importance (McMurdie & 
Holmes, 2014). CSS corrects for differences in library size by stand-
ardizing to the quartile where lower abundance taxa are well repre-
sented (Paulson et al., 2013).

Given that the majority of our sequences (64% of downloaded 
SRA entries) were identified on NCBI as being from P. damicornis, 
we only analysed this subset for downstream applications. We rec-
ognize that these sequences are not necessarily from P. damicornis 
sensu lato, as although some of the data originated from studies that 
employed marker-based taxonomic assessment of the host, none 
implemented whole-genome sequencing. With increasing genetic 
resources, recent studies have come to highlight the complex genet-
ics within this genus that often contradict marker-based approaches 
(see Oury et al., 2022 using ultra-conserved elements). Therefore, 
in taking a more conservative approach, we have decided to refer to 
our analysed sequences as coming from Pocillopora spp. In addition, 
in generating diagnostic standardized residual and QQ-plots, some 
of our variables showed a multimodal distribution, even after log and 
square-root transformations, and thus we removed these outlier se-
quences to meet normality assumptions. These removed sequences 
included specimens from the locations of Heron Island (Great Barrier 
Reef, Australia; n = 153 SRA entries) and New Caledonia (n = 70 SRA 
entries), specimens collected during the summer (n  =  10 SRA en-
tries), and specimens experiencing bleaching (n = 19 SRA entries). 
This pruned dataset was used for all subsequent analyses, which 
comprised a total of 101 SRA sample entries (see Table S2 for the 
entries used in downstream analyses and their associated data; the 
metadata is found in Table S3).

2.6  |  ASV richness across abiotic parameters

To understand how Symbiodiniaceae diversity varied across abi-
otic parameters, we plotted taxa richness, the Shannon diversity 
index and the inverse Simpson index across locations (categorized 
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by region) and TSB. For SST, we created scatterplots with ‘ggplot2’ 
package version 3.3.5 (Wickham, 2016). Given that there was het-
eroscedasticity in our residuals, even after transformation of the 
alpha diversity metrics, we fit linear models using generalized least 
squares (GLS) using the ‘nlme’ package version 3.1-153 (Pinheiro 
et al.,  2021), where we allowed each level within our explanatory 
variable ‘location’ to have different variances. For our GLS models, 
we nested locations within regions, and set SST and TSB as fixed 
effects. We performed post-hoc comparisons using the ‘emmeans’ 
package version 1.7.0 as this uses estimated marginal means to com-
pare the effects of factors (Lenth, 2021), with effective degrees of 
freedom calculated with the Welch Satterthwaite approximation 
and implements the Benjamini and Hochberg p-value correction for 
multiple comparisons. All comparisons were tested at a 95% confi-
dence level.

2.7  |  Symbiodiniaceae community composition

We created pie charts for each location's Symbiodiniaceae com-
munity using the ‘plot_bar’ argument from ‘phyloseq’ (McMurdie 
& Holmes,  2013) to further visualize differences across the Indo-
Pacific; these pie charts were placed over a map of our study region. 
We also plotted Symbiodiniaceae ASV networks to ascertain how 
Symbiodiniaceae partnerships were structured across locations. We 
created connectivity networks via the ‘plot_net’ argument in ‘phy-
loseq’ (McMurdie & Holmes,  2013) using only the top 20 taxa by 
abundance, implementing the Fruchterman-Reingold layout algo-
rithm (Fruchterman & Reingold,  1991) and using Bray–Curtis dis-
similarity to calculate distances (Bray & Curtis, 1957).

We performed non-metric multidimensional scaling (nMDS) 
ordination with Bray–Curtis dissimilarities to visualize how 
Symbiodiniaceae community composition varied across our geo-
graphical parameters. We performed an nMDS with Bray–Curtis 
dissimilarities because this is a robust ordination approach that is 
able to handle missing ASVs (Buttigieg & Ramette,  2014). Bray–
Curtis distances focus on compositional dissimilarity without mak-
ing assumptions about the phylogenetic relationships between 
samples and can also process missing values. We created our or-
dination plots via ‘ordinate’ in the ‘phyloseq’ package (McMurdie & 
Holmes, 2013) and plotted 95% confidence ellipses. We performed a 
PERMANOVA with 999 permutations and Bray–Curtis distances via 
the adonis2 function in the R package ‘vegan’ version 2.5 (Oksanen 
et al., 2020) to determine which variables were driving significant 
differences in Symbiodiniaceae communities; post-hoc pairwise 
comparisons were performed with the pairwise.adonis2 function 
(Martinez Arbizu, 2020), implementing the Benjamini and Hochberg 
p-value correction for multiple comparisons. In the PERMANOVA, 
we nested locations within regions, and set SST and TSB as fixed 
effects. We detected statistically significant heterogeneity of dis-
persions based on ‘betadisper’ in ‘vegan’ (Oksanen et al., 2020), and 
thus used PERMANOVA, which is more robust to heteroscedasticity 
than ANOSIM (see Anderson & Walsh, 2013).

We further explored how different Symbiodiniaceae ITS2-type 
profiles varied across our locations and environmental parameters 
by running each genus in its own PERMANOVA model, with 999 
permutations and Bray–Curtis distances via the adonis2 function 
(Oksanen et al., 2020). Here, we nested locations within regions, and 
set SST and TSB as fixed effects in the model.

2.8  |  Mantel tests and indicator species analyses

We ran Mantel tests using the package ‘vegan’ (Oksanen et al., 2020) 
to determine if geographical distances and temperature differences 
could explain Symbiodiniaceae community dissimilarity. We calcu-
lated geographical distances from our sample location's coordinates 
using Haversine distances in the package ‘geosphere’ version 1.5 
(Hijmans, 2019), as this takes into account the Earth's spherical shape. 
We used these calculated geographical distances for our Mantel tests, 
which we ran with 999 permutations and used Spearman correlation 
coefficients. For our temperature Mantel tests, we used the same pa-
rameters as for geographical distances, with the exception that we 
calculated differences across temperatures using Euclidean distances.

We performed an indicator species analysis (Dufrêne & 
Legendre,  1997) using the ‘indicspecies’ package's version 1.7.9 
(Cáceres & Legendre, 2009) ‘multipatt’ command with 999 permuta-
tions and implementing the Benjamini and Hochberg p-value correc-
tion for multiple comparisons, to ascertain if certain Symbiodiniaceae 
taxa were significantly associated with certain locations or TSB.

3  |  RESULTS

3.1  |  Overview of the downloaded data

From NCBI's SRA, we downloaded 839 FASTQ files representing 
Symbiodiniaceae ITS2 sequences from Pocillopora corals. Our FASTQ 
files encompassed three different ITS2 primer pairs, 27 locations, 
and were referenced on NCBI as representing 4 Pocillopora species: 
Pocillopora acuta, P. damicornis, P. meandrina and P. verrucosa. The 
majority of the sequences (79%) used one of two primer sets: the 
ITSIntFor2 (LaJeunesse, 2002) and ITS2 pair (Coleman et al., 1994), 
or the ITS-DINO (Pochon et al., 2001) and ITS2Rev2 (Stat et al., 2009) 
pair. As each primer set amplifies a slightly different length of the 
ITS2 region, combining these datasets could potentially cause the dif-
ferences in length to be interpreted as mismatches by DADA2, and 
thus we only analysed sequences amplified with the ITS-DINO and 
ITS2Rev2 primer pair (referred to as the ‘DINO’ dataset hereon) be-
cause it represented the greatest geographical distribution and num-
ber of independent studies. We focused solely on entries identified as 
being from P. damicornis on NCBI for all our downstream analyses, as 
this was also the most abundant species present in the DINO primer 
set dataset, representing 63% of DINO sequences (see Table S1 to 
see all the downloaded DINO sequences' SRA numbers and associ-
ated data; the metadata are found in Table S3). However, given the 
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genetic delineation of species boundaries within of this genus is still 
being resolved (see Combosch & Vollmer,  2015; Johnston, Wyatt, 
et al.,  2022; Johnston et al.,  2017; Oury et al.,  2021, 2022; Pinzón 
& LaJeunesse,  2011), we will refer to these sequences as originat-
ing from Pocillopora spp. Furthermore, for downstream analyses, we 
used a subset of 101 SRA entries that met normality assumptions (see 
Table S2 for the entries used in downstream analyses and their associ-
ated data; the metadata are found in Table S3).

3.2  |  Phylogenetic tree

The SymPortal-based taxonomic assignment did not group 
Symbiodiniaceae ITS2-type profiles into clades on our phylogenetic 
tree (Figure  1a; see Table  S4). By comparison, the NCBI-based ITS2 
taxonomic assignment resulted in a tree whose relationships best-rep-
resented the accepted phylogeny of Symbiodiniaceae (see LaJeunesse 
et al., 2018), whose most important feature is that each Symbiodiniaceae 
genus is a distinct phylogenetic clade on the tree (Figure  1b; see 
Table S5). By comparison, the SymPortal-based taxonomic assignment 
did not group Symbiodiniaceae ITS2-type profiles into clades on our 
phylogenetic tree (Figure 1a; see Table S4). Therefore, we decided to 
use the NCBI-based taxonomic assignment to assign Symbiodiniaceae 
genera ITS2-type profiles as we were interested in how environmen-
tal and geographical parameters impacted the entire Symbiodiniaceae 
community at the ASV level with no additional classification. However, 
we also needed classification to the level of Symbiodiniaceae genera, 
which required us to classify the ASVs into generic groupings.

3.3  |  Patterns of diversity within Symbiodiniaceae 
communities

Symbiodiniaceae from Djibouti corals had the lowest median 
alpha diversity scores across richness, Shannon diversity and in-
verse Simpson metrics, while Symbiodiniaceae from Oman cor-
als had the highest median scores across all indices (Figure  2a). 
Corals from French Polynesia (four islands in our dataset) had a 
Symbiodiniaceae community with a narrow spread around the 
median for all metrics, except for Tahiti's Shannon and inverse 
Simpson indices (Figure 2a). There was no apparent difference in 
the median scores for sequences originating from corals that had 
recently versus those that had not recently bleached, but across 
all alpha diversity metrics the range of diversity values was great-
est for sequences originating from corals that had not bleached 
recently (Figure 2b, category ‘Long’). For SST, our scatterplots did 
not reveal a clear association between our three alpha diversity 
metrics and temperature (Figure  2c). Overall, our GLS models 
did not detect significant variation in median scores between se-
quences collected from corals representing distinct locations, re-
gions, SST regimes or TSB, except for the interaction between the 
Indian Ocean (region) and Oman (location) for Shannon diversity 
and inverse Simpson scores (Tables S6–S8).

3.4  |  Regional differences in Symbiodiniaceae 
communities

We observed broad differences in Symbiodiniaceae communities 
across regions (Figure 3). The farthest west location, Djibouti, was 
the only location with Symbiodinium spp. taxa (ITS2-type profiles A1 
and A2) and was overall dominated by Durusdinium spp., ITS2 type 

F I G U R E  1  Symbiodiniaceae phylogenetic tree using internal 
transcribed spacer 2 (ITS2) sequences derived from Pocillopora 
spp. The tree is a heuristic variant of a neighbour-joining tree made 
using FastTree 2 with 1000 resamples and a generalized time-
reversible model. The scale bar represents substitutions per site 
and support values are Shimodaira–Hasegawa-like local supports. 
Symbiodiniaceae taxonomy is shown on the basis of ITS2-type 
profiles mirroring the SymPortal database's output. Yet, based on 
recent taxonomic revision of the Symbiodiniaceae family, these 
profiles represent different genera and species. Briefly, ITS2-type 
A profiles correspond to Symbiodinium spp., ITS2-type B profiles 
correspond to Breviolum spp., ITS2-type C profiles correspond to 
Cladocopium spp., ITS2-type D profiles correspond to Durusdinium 
spp. and ITS2-type G profiles to Gerakladium spp. (a) Phylogenetic 
tree with the taxonomy assigned using SymPortal. (b) Phylogenetic 
tree with the taxonomy assigned using NCBI BLAST.

(a) ITS2-type 
profile

(b)

ITS2-type 
profile
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profile D1 (Figure 3, location 1). Moving from west to east, speci-
mens from Oman and Taiwan had Symbiodiniaceae communities 
predominantly composed of Cladocopium spp. (ITS2-type profiles 
C; Figure  3, locations 2–3, respectively). Specimens from French 
Polynesia, which were the furthest east (Figure  3, locations 4–7), 
were dominated by Durusdinium spp. (ITS2-type profile D). Network 
analysis supported these findings, as sequences from corals originat-
ing from Taiwan and Oman, which are in different oceanic basins, 
clustered with one another, although there was an isolated group of 
sequences from Oman which formed a separate cluster (Figure 4a). 
Likewise, all sequences from French Polynesia (Mo'orea, Raiatea, 
Tahiti and Taha'a), clustered with one another, and sequences from 
Djibouti did not cluster with other locations and instead formed two 
independent clusters (Figure 4a). nMDS plots also revealed concord-
ant regional clustering of Symbiodiniaceae communities, where there 
was an overlap in the ellipses for sequences from Oman and Taiwan, 
while sequences from Djibouti formed their own separate, 95% con-
fidence ellipse (Figure  4b). Sequences from French Polynesia also 
clustered with one another in ordination space (Figure 4b).

3.5  |  Geographical and environmental factors 
structuring Symbiodiniaceae communities

Our PERMANOVA analyses revealed that three variables were sig-
nificantly associated with differences (p < 0.05) in ASVs across loca-
tions: SST (p = 0.001, pseudo-F-statistic1,83 = 61.384, R2 = 0.238), 
region (p  =  0.001, pseudo-F-statistic2,83  =  51.626, R2  =  0.401) 
and TSB (p  =  0.031, pseudo-F-statistic1,83  =  2.474, R2  =  0.01), as 
well as the interaction between region and location (p  =  0.003, 
pseudo-F-statistic3,83  =  2.499, R2  =  0.029; Table  S9). Pairwise 
comparisons revealed that all locations significantly differed from 
each other except Taha'a versus Raiatea; all regions also signifi-
cantly differed from one another (all p < 0.05; see Tables  S10 and 
S11). Mantel tests revealed that more distant specimens had more 
distinct Symbiodiniaceae communities (Mantel r statistic  =  0.371, 
p = 1 × 10−4, 9999 permutations). We found the same trend for SST, 
with specimens collected from regions with more distinct SST values 
possessing more divergent Symbiodiniaceae communities (Mantel r 
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F I G U R E  2  Symbiodiniaceae community diversity across 
locations, regions, time since last mass bleaching event (TSB) and 
sea surface temperature (SST). The locations are (from west to 
east): Djibouti, Oman, Taiwan, Taha'a, Raiatea, Mo'orea and Tahiti. 
The three regions (from west to east) are: the Indian Ocean, Taiwan 
and French Polynesia. Three alpha diversity indices are shown: 
richness, Shannon diversity index and inverse Simpson index (left 
to right on each plot). Differences across locations (as colours) 
and regions (as symbols) are shown in (a), (b) shows differences 
across TSB. (c) Scatterplots of SST and richness, Shannon index and 
inverse Simpson indices.
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statistic = 0.409, p = 1 × 10−4, 9999 permutations). The Mantel r sta-
tistic for SST comparisons was marginally larger than for geographi-
cal distances, 0.409 versus 0.371, respectively. In comparing effect 
sizes from our PERMANOVA, SST emerged as the strongest driver 
of Symbiodiniaceae community composition across all statistically 
significant factors, followed by region (Table S9).

Our PERMANOVAs for each major ITS2-type profile (A, C and 
D) further revealed the factors structuring these symbioses. For 
all genera, on the basis of pseudo-F-statistics, SST most strongly 
impacted the presence/absence of specific ASVs, followed by re-
gion and then the interaction of region and location (all p < 0.05; 
see Tables  S12–S14). Pairwise post-hoc analyses revealed that for 
Symbiodinium spp., detected ASVs were statistically distinct be-
tween the Indian Ocean and French Polynesia, and the Indian Ocean 
and Taiwan, while for Cladocopium spp. and Durusdinium spp., pair-
wise comparisons between all regions were statistically significant 
(all p < 0.05; see Tables S15–S20 pairwise comparisons between lo-
cations and regions).

Indicator species analysis identified 79 ASVs that were differ-
entially associated with TSB, while 328 and 267 ASVs were differ-
entially associated with a given location and region, respectively 
(Tables S21–S23). When focusing on specific locations, all but one 
ASV (99.45%) from Taiwan were from Cladocopium spp., predomi-
nantly ITS2-type profile C1 (48.62%), with the sole remaining ASV 
being Durusdinium spp. ITS2-type profile D1 (Table S21). For French 
Polynesia, all ASVs were Durusdinium spp., however the majority 
of the sequences could not be identified down to a specific ITS2-
type profile, for example, D1 (62.5%; Table  S22). For specimens 
from the Indian Ocean (Oman, Djibouti), the associations were more 
heterogeneous, with 5% of ASVs being Symbiodinium spp., 24% 
Durusdinium spp. and 71% Cladocopium spp. (Table S22). In compar-
ing these two locations, Djibouti mostly had ASVs from Durusdinium 
spp. (81.82%), while Oman only had Cladocopium spp. (Table S21). In 
recently bleached specimens, 48.84% of the ASVs were Cladocopium 

spp. and 51.16% were Durusdinium spp. For specimens that had 
not recently bleached, 13.89% of ASVs were Symbiodinium spp., 
30.56% were Cladocopium spp. and 55.56% were Durusdinium spp. 
(Table S23).

4  |  DISCUSSION

This study represents the only meta-analysis to date that explicitly 
considers how geographical and environmental parameters struc-
ture the Symbiodiniaceae communities associated with a coral 
genus across its range. Our dataset captures the considerable diver-
sity of thermal parameters, such as SST and TSB, which are found 
across Pocillopora's range. We find support for our prediction that 
thermal regimes, here SST, most strongly structured Pocillopora–
Symbiodiniaceae associations, and yet to a lesser extent, geographi-
cal isolation also explained community similarity patterns. Overall, 
our work underscores previous studies on Pocillopora's diverse 
Symbiodiniaceae assemblages, while also placing potential mecha-
nisms and consequences of this symbiont flexibility in conversation 
with previous work on the biogeographical factors impacting the 
distribution of Indo-Pacific marine taxa.

4.1  |  Patterns of diversity in Symbiodiniaceae 
communities

Although alpha diversity metrics varied across locations, regions, 
SST and TSB, based on our GLS models only the interaction between 
Oman and the Indian Ocean was significant for Shannon diversity 
and inverse Simpson indices; all other associations were not signifi-
cant. This is in line with the most notable pattern in the alpha di-
versity data, which was the strong difference between Oman and 
Djibouti within the Indian Ocean. Oman was the location with the 

F I G U R E  3  Symbiodiniaceae communities from Pocillopora spp. across the Indo-Pacific. Pie charts represent community composition 
on the basis of internal transcribed spacer 2 (ITS2)-type profiles. Symbiodiniaceae taxonomy is shown on the basis of ITS2-type profiles 
mirroring the SymPortal database's output. Yet, based on recent taxonomic revision of the Symbiodiniaceae family, these profiles represent 
different genera and species. Briefly, ITS2-type A profiles correspond to Symbiodinium spp., ITS2-type B profiles correspond to Breviolum 
spp., ITS2-type C profiles correspond to Cladocopium spp. and TS2-type D profiles correspond to Durusdinium spp. Major oceanic currents 
are shown as black arrows, with the equator shown as a thick dark grey line across the map. The map uses an equirectangular projection to 
best represent distances across studied locations. Locations are as follows (from west to east): (1) Djibouti, (2) Oman, (3) Taiwan, (4) Taha'a, 
(5) Raiatea, (6) Mo'orea and (7) Tahiti.
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largest values for Shannon diversity and inverse Simpson metrics in 
the dataset and also experienced the highest SST (30.8°C).

4.2  |  Symbiodiniaceae communities are structured 
by geography and thermal regimes

Our results highlight the diverse Symbiodiniaceae community that 
is associated with Pocillopora spp. and reveal how these symbi-
oses are structured across space and impacted by environmental 
parameters. Cladocopium spp., Durusdinium spp. and Symbiodinium 
spp. were most commonly associated with Pocillopora spp. 
within our dataset, in concordance with previous studies (Baker 
et al., 2017; Brener-Raffalli et al., 2022; LaJeunesse et al., 2004; 
Ziegler et al.,  2017). At the ASV level, both geographical and 
environmental (SST and TSB) factors significantly influenced 
Symbiodiniaceae community dissimilarity, as revealed by our 
Mantel tests and PERMANOVA results. These findings suggest 
that local thermal regimes represent a key mechanism structuring 
Symbiodiniaceae communities.

While this study represents the first to investigate 
Symbiodiniaceae community composition across broad geographi-
cal scales for Pocillopora spp., previous work has revealed that dif-
ferences in temperature, light availability, depth and geographical 
separation can result in location-specific Symbiodiniaceae commu-
nities (cf. Cooper et al., 2011; Frade et al., 2008; Wicks et al., 2010). 
Together, these results may reflect the dual processes of isola-
tion by distance and isolation by adaptation (Nosil et al.,  2009; 
Spurgin et al.,  2014; Wang & Bradburd,  2014). For instance, prior 
studies with Pocillopora in the Arabian Peninsula have posited that 
Symbiodiniaceae communities exhibit high host specificity and site 
fidelity due to local adaptation to the region's high salinity and tem-
perature regimes (Ziegler et al., 2017); other genera in this region 
exhibit similar host–symbiont interactions (Howells et al., 2020). Our 
results indicate that these patterns could be relatively widespread, 
with Symbiodiniaceae communities strongly associated with local 
SST, which was the variable with the largest effect size of the statis-
tically significant factors in our PERMANOVAs. For example, despite 
being in distant regions of the Indo-Pacific, the communities found 
in Oman and Taiwan, which have similar SSTs (mean of 30.8 and 
28.63°C, respectively), were most similar to one another.

However, environmental conditions are not the only factor 
structuring these symbioses—our analyses also revealed a general 
pattern of isolation by distance across the Symbiodiniaceae commu-
nities. A recent Pocillopora-wide study in the Indo-Pacific proposed 
two newly defined Symbiodiniaceae taxa, Cladocopium latusorum 
and C. pacificum. These two taxa are genetically connected across 
their range but show greater genetic differentiation between popu-
lations from distant regions (Turnham et al., 2021). Symbiodiniaceae 
can disperse over long distances via sea surface currents (Chen 
et al.,  2020; Pettay & LaJeunesse,  2013), and yet currents may 

F I G U R E  4  Regional differences in Symbiodiniaceae communities 
from Pocillopora spp. across the Indo-Pacific. (a) Symbiodiniaceae 
networks across locations, where colours represent different 
locations and shapes are different regions. The locations are 
as follows (from west to east): Djibouti, Oman, Taiwan, Taha'a, 
Raiatea, Mo'orea and Tahiti. The regions shown are (from west 
to east): the Indian Ocean, Taiwan and French Polynesia. The 
network was created via the Fruchterman–Reingold layout 
algorithm with Bray–Curtis dissimilarities used as distances. (b) 
Non-metric multidimensional scaling (nMDS) ordination plots 
of Symbiodiniaceae across locations and regions, where colours 
represent different locations and shapes are different regions. 
Locations and regions are the same as in (a). The nMDS plot 
implements Bray–Curtis dissimilarities and shows 95% confidence 
ellipses.
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also create hydrographic barriers preventing their movement 
(LaJeunesse et al.,  2008). Our results suggest that long-distance 
dispersal does have limits, and that geographical distance and local 
SST regimes could act synergistically as a filter that determines the 
connectivity of Symbiodiniaceae communities across the disparate 
regions of Pocillopora's range in the Indo-Pacific.

4.3  |  Bleaching events as a driver of 
Symbiodiniaceae community change

A switch from Cladocopium spp. to Durusdinium spp. has been re-
ported to assist coral colonies experiencing thermal stress by sig-
nificantly reducing bleaching-induced mortality (Baker et al., 2004; 
Glynn et al.,  2001; Stat & Gates,  2010). Experimental work sug-
gests that both Symbiodinium spp. and Cladocopium spp. show 
variable thermotolerance, with strain/species-level differences re-
vealing thermotolerant and sensitive members alike (Díaz-Almeyda 
et al., 2017; Fisher et al., 2012). Long-term acclimation, or adapta-
tion, of Symbiodinium spp. in the Red Sea has also been proposed, 
given this genus predominates under conditions that encompass a 
6.0°C temperature gradient across seasons (Sawall et al., 2014). Our 
indicator species analyses present a community shift in relation to 
TSB, with Symbiodinium spp. no longer detected in recently bleached 
specimens, alongside a concordant increase in Cladocopium spp. The 
prevalence of Durusdinium spp. and Cladocopium spp. was compa-
rable between specimens that had and had not recently bleached, 
albeit there was marginally less Cladocopium spp. found in specimens 
that had not recently bleached, purporting that perhaps the relative 
abundance of Symbiodinium spp. and Cladocopium spp. may be more 
indicative of responses to thermal stress within our system.

Our indicator species analysis findings are potentially consistent 
with the notion of coral symbiont shuffling as an adaptive response 
to thermal stress (see Baker et al., 2004; Buddemeier & Fautin, 1993; 
Cunning et al., 2015; Glynn et al., 2001; Jones et al., 2008). For in-
stance, in the coral genus Acropora, there are trade-offs in hosting 
Durusdinium spp. versus Cladocopium spp., with corals associated 
with Durusdinium spp. showing reduced growth rates but reduced 
temperature-induced bleaching (Jones & Berkelmans, 2010; Jones 
et al.,  2008; Little,  2004). It is thought that this explains the pat-
tern of Symbiodiniaceae communities reverting to their original 
composition once SSTs return to pre-bleaching conditions, which 
can take from several months to years (Lewis et al., 2019; Sampayo 
et al., 2008; Thornhill et al., 2006). We additionally present that the 
dynamics between Cladocopium spp. and Symbiodinium spp. may be 
another critical microbial interaction for Pocillopora corals under 
thermal stress, which has received much less attention to date (but 
see Sawall et al., 2014).

An important caveat is that none of the Pocillopora colonies in our 
analysed dataset were sampled during a bleaching event, so it is also 
possible that the stress induced by recent periods of elevated SST 
were not sufficient to cause a shift in Symbiodiniaceae communities 
towards more thermotolerant strains/species, or that communities 

did shift but had reverted back under more benign conditions. It is 
also possible that the documented elevated SST was not sufficient 
to trigger thermal stress, perhaps because the Symbiodiniaceae com-
munities were already locally adapted to conditions that would other-
wise be denoted as stressful (Howells et al., 2020; Ziegler et al., 2017). 
Our results suggest that the traditional conceptualization of the ben-
efits of switching to Durusdinium spp. may not accurately capture the 
potential of microorganisms to adapt to thermal stress events (see 
Abrego et al., 2008). Characterizing the thermotolerance of different 
Symbiodiniaceae species and strains will be greatly aided by further 
molecular analyses, with recent genome assemblies providing in-
sights into genomic adaptations to thermal stress and symbiosis es-
tablishment (e.g. Liu et al., 2018; Shoguchi et al., 2021).

4.4  |  Pocillopora–Symbiodiniaceae associations 
complement previous work on the biogeographical 
factors structuring marine taxa

The influence of geographical and local environmental factors 
structuring Pocillopora–Symbiodiniaceae associations that we have 
reported here shows similarities with patterns that have been docu-
mented in a diversity of Indo-Pacific marine taxa (i.e. Benzie, 1999; 
Crandall et al.,  2019; DeBoer et al.,  2014; Hirschfeld et al.,  2021; 
Lessios et al., 1999; van der Ven et al., 2021). In particular, there is 
consensus that current-assisted dispersal fails to fully explain con-
temporary species distributions, with regional environmental re-
gimes being an important factor to consider. Our study adds new 
understanding by explicitly investigating the distribution of a core 
member of a microbiome within the context of its host range. In ad-
dition, we investigate the role of thermal regimes as a key environ-
mental driver, whereas prior work has focused on factors such as 
salinity, habitat type (e.g. oceanic vs. benthopelagic), upwelling, or in 
some cases did not define specific factors but instead tested for ‘re-
gional differences’ (e.g. Crandall et al., 2019; Hirschfeld et al., 2021; 
Lessios et al., 2001; but see Keith et al., 2013 where SST is explicitly 
considered). Although past studies of Symbiodiniaceae distributions 
have not explicitly considered thermal regimes, temperature has 
been hypothesized as being highly important in structuring marine 
host–microbiome interactions (see DeBoer et al., 2014 for Tridacna 
clams; Turnham et al., 2021 for Pocillopora corals). Given that climate 
change is causing SST to approach the thermal limits for many spe-
cies, and the thermal sensitivity of many marine taxa (particularly 
corals), it is crucial to understand the influence of this factor for both 
the host and their microbiome.

4.5  |  Further work is needed to improve species 
delimitations within the Pocillopora genus

Although all sequences used for downstream analyses were identi-
fied on NCBI as being from ‘Pocillopora damicornis’, we recognize 
that sequences on public repositories are heterogeneous, and that 

 13652699, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.14560 by M

cgill U
niversity, W

iley O
nline L

ibrary on [30/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  679GLYNN et al.

species delineations within this genera are actively evolving (see 
Johnston, Wyatt, et al., 2022; Oury et al., 2021, 2022; Schmidt-Roach 
et al., 2013). None of the studies analysed employed whole-genome 
sequencing to verify the identity of the host, with most implementing 
only single-marker data, most notably the mitochondrial open read-
ing frame (mtORF), which is the most commonly used to distinguish 
between Pocillopora species given there is concordance between this 
marker and nuclear and morphometric datasets (Johnston et al., 2017; 
Pinzón & LaJeunesse, 2011; Pinzón et al., 2013). A few studies have 
implemented reduced representation sequencing approaches (mi-
crosatellites, restriction-site associated DNA sequencing) to further 
improve genetic delineation of species within this genus, but the 
findings have yielded complex patterns of genetic differentiation and 
hybridization at both local and global scales (e.g. Aurelle et al., 2022; 
Combosch & Vollmer,  2011, 2015; Oury et al.,  2021, 2022; van 
Oppen et al., 2018). With whole-genome approaches becoming more 
affordable, and the availability of many Pocillopora species' reference 
genomes (P. acuta: Vidal-Dupiol et al., 2020; P. damicornis: Cunning, 
Silverstein, et al., 2018; P. verrucosa: Buitrago-López et al., 2020), we 
expect significant advances in our understanding of the genetic basis 
of thermal stress tolerance within Pocillopora (see Fuller et al., 2020 
for this work in Acropora).

5  |  CONCLUSIONS

Our meta-analysis demonstrates the diversity of Symbiodiniaceae 
assemblages associated with cosmopolitan Pocillopora spp. and 
posits thermal regimes as a key factor driving variation in commu-
nity composition across this genus' range. Our work suggests that 
although isolation by adaptation to thermal regimes may be driving 
some differences across locations, there is also a signal of isolation 
by distance, indicating limits to connectivity across the Indo-Pacific. 
In addition, time since the last mass bleaching event emerged as an 
important factor structuring Symbiodiniaceae communities, sup-
porting previous work presenting Symbiodiniaceae community com-
position as a potentially adaptive response to local thermal regimes. 
Our work places coral–Symbiodiniaceae interactions in conversa-
tion with a robust corpus on the biogeographical factors structur-
ing marine taxa's distributions, providing a framework for future 
Symbiodiniaceae community studies in Pocillopora corals that aim 
to characterize how the spatiotemporal patterns of diversity impact 
resilience to environmental stress.
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