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1  |  INTRODUC TION

Temperature is a powerful driver of global biogeography, and spe-
cies distributions frequently reflect temperature gradients in both 
aquatic and terrestrial habitats (Hochachka & Somero, 2002). Many 
species adopt thermal strategies (such as thermoregulation or ac-
climation) that determine their thermal niche (Coutant, 1987; Huey 
& Kingsolver, 1989; Huey & Slatkin, 1976) and thermal traits can 

provide a target for directional selection if the environment changes 
to include temperatures outside the range encompassed by the 
thermal niche. Adaptation can thus permit species to persist at tem-
peratures that would have previously led to extirpation (Hoffman 
& Sgrò, 2011; Sexton et al., 2009). Under moderate climate change 
scenarios, mean global oceanic temperature is projected to increase 
in excess of 2°C by the end of the century (IPCC, 2014), with more 
extreme changes predicted in localized regions (Eyer et al., 2019; 
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Abstract
Species distribution models (SDMs) are widely used to predict range shifts but could 
be unreliable under climate change scenarios because they do not account for evolu-
tion. The thermal physiology of a species is a key determinant of its range and thus 
incorporating thermal trait evolution into SDMs might be expected to alter projected 
ranges. We identified a genetic basis for physiological and behavioural traits that 
evolve in response to temperature change in natural populations of threespine stick-
leback (Gasterosteus aculeatus). Using these data, we created geographical range pro-
jections using a mechanistic niche area approach under two climate change scenarios. 
Under both scenarios, trait data were either static (“no evolution” models), allowed to 
evolve at observed evolutionary rates (“evolution” models) or allowed to evolve at a 
rate of evolution scaled by the trait variance that is explained by quantitative trait loci 
(QTL; “scaled evolution” models). We show that incorporating these traits and their 
evolution substantially altered the projected ranges for a widespread panmictic ma-
rine population, with over 7-fold increases in area under climate change projections 
when traits are allowed to evolve. Evolution-informed SDMs should improve the pre-
cision of forecasting range dynamics under climate change, and aid in their application 
to management and the protection of biodiversity.
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Walther et al., 2002) for both cooling and warming events (Hu et al., 
2018). Accurately predicting species range patterns under climate 
change therefore requires data for temperature-associated adap-
tive trait evolution (Bay et al., 2017; Bush et al., 2016; Catullo et al., 
2015).

The genetic basis of thermal traits has been explored in many 
terrestrial ectotherms (Angilletta et al., 2002; Bowler & Terblanche, 
2008; Dillon et al., 2009; Rolandi et al., 2018) and there have been in-
tegrative frameworks proposed for how best to use this information 
to assess the vulnerability of organisms to environmental changes 
(Araújo et al., 2013; Bay et al., 2017; Huey et al., 2012). Given the 
differences in thermal biology between terrestrial and aquatic ecto-
therms (Sunday et al., 2011) and differential warming between ter-
restrial and aquatic habitats (IPCC, 2014, 2018), predicting how the 
thermal biology of aquatic organisms will respond to environmen-
tal changes requires an understanding of the genetic architecture 
underlying ecologically relevant thermal traits (Healy et al., 2018) 
in aquatic systems. The genetic basis of thermal traits has been ex-
plored in a number of socioeconomically and culturally important 
fish species (Everett & Seeb, 2014; Jackson et al., 1998; Jin et al., 
2017; Larson et al., 2016; Muñoz et al., 2014; Perry et al., 2001) and 
there has been an extensive body of work on the thermal biology 
of the common killifish (Fundulus heteroclitus; Bryant et al., 2018; 
Fangue et al., 2006, 2009; Healy et al., 2018). These studies suggest 
that a significant proportion of phenotypic variance in thermal traits 
can be explained by genetic variation (e.g., 35 single nucleotide poly-
morphisms [SNPs] explained 51.9% of the variation for upper ther-
mal tolerance in killifish; Healy et al., 2018), highlighting the potential 
for heritable responses to changes in thermal conditions.

While the climate and ocean temperatures are warming overall, 
thermal events characterized by both cold and heat extremes are oc-
curring with increasing frequency (Hu et al., 2018; IPCC, 2014, 2018; 
Stott, 2016). Regionally downscaled environmental changes can be 
highly spatially heterogenous relative to global temperature trends, 
and are likely to be the most relevant for species-specific responses 
in the context of contemporary climate change (Walther et al., 2002). 
For example, range expansions of marine species have been medi-
ated by both ocean-scale warming and regional cooling (Zeidberg & 
Robison, 2007). In such cases, population persistence and adapta-
tion will rely on both upper and lower critical thermal limits, forcing 
organisms to respond independently to extreme heat and extreme 
cold in separate events (Herring et al., 2015, 2018, 2020; Hu et al., 
2018; Walther et al., 2002). Importantly, adaptation in one thermal 
trait can shift the thresholds of correlated thermal traits (Buckley & 
Huey, 2016; Denny & Dowd, 2012; Hoffman & Sgrò, 2011; Huey & 
Kingsolver, 2011). Associations between traits influence the rate of 
trait adaptation and thus correlated traits must be considered when 
attempting to predict future species distributions under climate 
change (Bestion et al., 2015; Hoffman & Sgrò, 2011; Valladares et al., 
2014). Recently there have been steps to incorporate theoretical 
trait evolution into species distribution models (SDMs) (e.g., by in-
cluding the breeder's equation for a key phenotypic trait; Bush et al., 

2016; Catullo et al., 2015; Kearney & Porter, 2009). However, no 
model has used empirical estimates of evolutionary rates to inform 
projected species ranges under climate change scenarios.

Threespine stickleback (Gasterosteus aculeatus, Figure 1a) is a 
useful vertebrate species for understanding the impact of adapta-
tion on range dynamics under climate change. This species exhib-
its widespread phenotypic variation (Hendry et al., 2013), there are 
publicly available genomic resources (Jones, Grabherr, et al., 2012) 
and prior research on temperature-associated evolutionary rates 
for this species (Barrett et al., 2011; Morris et al., 2018). It is also 
feasible to artificially breed multiple hybrid generations in common 
garden laboratory environments. Moreover, there is a regionally 
downscaled climate model for the Pacific Northwest (Alexander 
et al., 2018; IPCC, 2014; Reynolds et al., 2007), which makes panmic-
tic marine populations of G. aculeatus in the eastern Pacific Ocean 
(Kirch et al., 2021; Morris et al., 2018) an ideal system for testing 
how adaptive trait variation could affect projections of species 
ranges under climate change.

The objective of this study was to incorporate ecologically and 
evolutionarily relevant data on thermal traits into end-of-century 
projections of SDMs. To accomplish this, we assessed physiological 
and behavioural temperature-associated traits in two marine and 
two freshwater populations of threespine stickleback, as well as 
within-population F1 families and marine-freshwater hybrid F1 and 
F2 families. We used the hybrid families to construct genetic linkage 
maps and identified multiple quantitative trait loci (QTL) associated 
with thermal preference, as well as upper and lower critical thermal 
limits. Using these genetically based traits and empirically derived 
evolutionary rate data for this species (Barrett et al., 2011), as well as 
others (Morgan et al., 2020; Sanderson et al., 2021), we constructed 
SDMs using a mechanistic niche area approach that integrated the 
trait data reported in this study and allowed those traits to evolve 
under two climate change scenarios, three distinct types of evolu-
tionary models and three evolutionary rates.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and husbandry

We collected adult Gasterosteus aculeatus from two marine popula-
tions (Bamfield, M1, 48°49′12.69″ N, 125° 8′57.90″ W; Garden Bay 
Lagoon, M2, 49°37′52.84″ N, 124° 1′49.26″ W) and two freshwa-
ter populations (Hotel Lake, FW1, 49°38′26.94″ N, 124° 3′0.69″ 
W; Klein Lake, FW2, 49°43′32.47″ N, 123°58′7.83″ W) in south-
western British Columbia (Figure 1b) at depths of less than 0.5 m. 
To ensure that any genetic variation identified would be relevant 
for adaptation within this region, we confined our study to a sin-
gle genetically panmictic cluster of populations (Morris et al., 2018). 
Individuals were maintained in a flow-through system and under a 
photoperiod that mimicked the natural source population environ-
ment during collection periods before transport. We transported 
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2314  |    SMITH et al.

the fish to the Life and Environmental Sciences Animal Resources 
Centre at the University of Calgary, where we separated the fish into 
population-specific 113-L glass aquaria at a density of ~20 fish per 
aquarium. We acclimated marine individuals to freshwater salinity 
over 1 week and maintained fish in a common garden environment 
(salinity of 4–6 ppt, water temperature of 15 ± 2°C, and a photo-
period of 16:8  h light:dark). Individuals were allowed to acclimate 
for at least 2 weeks before experiments (1 week for stress reduc-
tion post-transfer, 1  week for common garden environment accli-
mation and salinity ramp). Each common garden aquarium was on a 
closed system with individual filters, air stones and water supply. We 
fed all adult fish ad libitum once per day with thawed bloodworms 
(Hikari Bio-Pure Frozen Bloodworms). All collections and transfers 
were approved by Fisheries and Oceans Canada (marine collections 
and provincial transfers), the Ministry of Forests, Lands, and Natural 
Resource Operations (freshwater collections) and the Huu-ay-aht 
First Nations (marine collections).

2.2  |  Crossing design for marine and freshwater 
F1 families

We collected eggs from females and fertilized the eggs with ex-
tracted testes from euthanized males. We transferred the fertilized 
egg mass to a mesh-bottomed egg incubator suspended in a 37-L 
aquarium for hatching. Each hatching aquarium was maintained 
with a single air stone and a filter. Once hatched, we reared the lar-
val fish in 37-L hatching aquaria until they reached a total length 
(TL) of ~1 cm, after which we split the families into family-specific 
113-L aquaria to maintain suitable densities. We fed the larval fish 
ad libitum twice daily with live Artemia spp. nauplii, and then gradu-
ally transitioned the diet to chopped, thawed bloodworms (Hikari 
Bio-Pure Frozen Bloodworms) ad libitum once daily as they reached 
~2 cm TL. The F1 families were maintained in a common garden en-
vironment identical to that of the F0 populations. We produced one 
F1 family for each population (M1_F1, M2_F1, FW1_F1, and FW2_F1).

F I G U R E  1  (a) Adult threespine 
stickleback (Gasterosteus aculeatus) from 
a single genetic cluster were sampled 
from (b) two marine and two freshwater 
populations in the Canadian Pacific 
Northwest. These populations were 
assayed for (c) thermal preference (green), 
critical thermal minima (CTmin, blue) and 
maxima (CTmax, red). Thermal trait values 
for marine populations (M1 and M2) were 
incorporated into the species distribution 
models [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a)

(c)

(b)
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2.3  |  Crossing design for hybrid mapping families

To generate genetically heterogeneous marine–freshwater F1 fami-
lies from wild F0 parents, we collected eggs from marine females 
and fertilized the eggs with extracted testes from euthanized fresh-
water males. Egg masses were hatched and juveniles were reared 
as detailed above. We produced one F1 family of M1  ×  FW1  hy-
brids (hereafter referred to as H1_F1) and three F1 families of 
M1 × FW2 hybrids (hereafter referred to as H2_F1). The hybrid F1 
families were maintained in a common garden environment identical 
to that of the F0 populations. To generate F2 families for linkage map 
construction and QTL mapping, we crossed siblings from the same 
F1 family using the same methodology that was used to generate 
the F1 families. The amount of trait variation explained by these hy-
brid crosses is likely to be higher than would be observed in marine–
marine or freshwater–freshwater crosses, increasing our likelihood 
of detecting QTL. Overall, we produced one F2 family of H1 × H1 hy-
brids (referred to as H1_F2) and three families of H2 × H2 hybrids 
(referred to as H2_F2_1, H2_F2_2 and H2_F2_3). All F2 individuals 
were raised as described above in a common garden environment 
identical to that of the F0 and F1 individuals to ensure consistent 
thermal history.

2.4  |  Thermal tolerance and preference 
experiments

To assess the lower and upper limits of physiological thermal toler-
ance, we conducted standard critical thermal minimum (CTmin) and 
maximum (CTmax) experiments on adult fish (Barrett et al., 2011; 
Fangue et al., 2006; Hutchison, 1961). At these sublethal limits, the 
fish experience a loss of equilibrium (LOE) at which they lose the 
ability to escape conditions that would ultimately lead to their death 
(Beitinger et al., 2000). Before each experiment, individuals were 
fasted for 24 h. Our experimental tank held 1000-ml glass beakers 
aerated individually to prevent thermal stratification. After a 15-min 
acclimation to the experimental apparatus in the individual beakers, 
we cooled or heated the water (for CTmin or CTmax, respectively) at 
a rate of ~0.33°C min−1. We assessed wild F0 individuals (nM1 = 32, 
nM2  =  14, nFW1  =  15, nFW2  =  16, N  =  77; Figure S2), and labora-
tory raised F1 (nM1_F1 = 13, nM2_F1 = 15, nFW1_F1 = 15, nFW2_F1 = 15, 
N  =  58; Figure S2), and F2 individuals (nH1_F2  =  28, nH2_F2_1  =  36, 
nH2_F2_2 = 21, nH2_F2_3 = 17, N = 102; Figure S3). All individuals were 
assessed for CTmin, allowed to recover for at least 3 days, and then 
assessed for CTmax to keep thermal stress history consistent. The 
onset of erratic behaviours associated with a behavioural stress re-
sponse (i.e., “agitation windows”; Turko et al., 2020) occurred below 
5.0°C and above 25.0°C during CTmin and CTmax experiments, 
respectively. Normal behaviour was observed between 5.0 and 
25.0°C, whereas outside of those temperatures, individuals gradu-
ally exhibited more extreme stress responses (e.g., increased gilling 

rate, erratic movement, muscle spasms, listing; as outlined by the 
Canadian Council of Animal Care guidelines) until reaching LOE and 
the inability of an individual to right itself (the experimental end-
point, measured in 0.5°C increments; Barrett et al., 2011; Fangue 
et al., 2006; Hutchison, 1961).

To assess the range of behavioural thermoregulation, we con-
ducted thermal preference experiments in a temperature Shuttlebox 
(Loligo Systems). Experimental pools were set with a static gradi-
ent of 10°C in the cool side and 20°C in the warm side, connected 
with a water bridge at 15°C (acclimation temperature). Temperature 
was continually monitored and recorded by immersed temperature 
probes, connected to a computer-driven temperature controller 
and data acquisition system (DAQ-M; Loligo Systems). Movement 
in the Shuttlebox was tracked by an infrared-sensitive uEye USB 
2.0 camera (IDS Imaging Development Systems) which connected 
to shuttlesoft (version 2; Loligo Systems) and allowed monitoring 
of fish movement. Following recovery from CTmax experiments 
(at least 3 days), individuals were acclimated in the Shuttlebox for 
15 min, with entry at “cool” or “warm” pool randomized, to allow for 
exploration of the gradient. After acclimation to the experimental 
apparatus, the movement of each individual was tracked in 1-s inter-
vals for 30 min, recording the preferred ambient water temperature 
(thermal preference). Individuals were assessed individually in the 
Shuttlebox apparatus to avoid any confounding social behaviours 
(e.g., as seen in shoaling behaviours; Cooper et al., 2018). At the 
time of data collection for thermal trait experiments, all individuals 
were adults.

Relationships between all thermal traits separated by population 
and generation were assessed using the Pearson product-moment 
correlation with the corrplot (version 0.84, Wei et al., 2017) and 
Hmisc (version 3.14-0, Harrell, 2014) packages in R (R Core Team, 
2021).

2.5  |  Isolation and characterization of SNPs

Genomic DNA was extracted from caudal fin tissue using a phenol–
chloroform-based protocol. We digested tissues overnight in di-
gestion buffer and proteinase K at 55°C, then performed multiple 
phenol–chloroform and ethanol washes to isolate the DNA. We 
assessed the quantity of the extracted DNA using the Quant-iT 
PicoGreen dsDNA assay kit (ThermoFisher Scientific) and Synergy 
HT plate reader with the Gen5-associated software (BioTek). We 
prepared restriction site-associated DNA (RAD) libraries (Peterson 
et al., 2012) using MluCl and NlaIII restriction enzymes (New England 
Biolabs), ligation of individual barcodes and pooling of 48 individu-
als per library at equimolar concentrations. We performed a final 
polymerase chain reactrion to amplify DNA and add library-specific 
indices to allow for pooling of multiple libraries. We sequenced three 
libraries at the McGill University and Génome Québec Innovation 
Center on one lane of an Illumina HiSeq 4000 (Illumina).
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TA B L E  1  Significant quantitative trait loci (QTL) for critical thermal minimum (CTmin), critical thermal maximum (CTmax) and thermal 
preference (Preference) traits with the percent of trait variance explained (PVE) for each QTL, the logarithm of odds (LOD) threshold for 
significance and the LOD peak observed for each QTL

QTL Name Family Phenotype
Linkage 
group

Position 
(cM) 95% CI PVE (%)

LOD threshold 
(5%)

LOD 
peak

Q1 H1_F2 CTmax XII 4.56 0.000–11.38 45.2 2.71 2.87

Q2 H1_F2 Preference III 50.04 43.21–70.80 53.3 2.78 3.64

Q3 H2_F2_1 CTmin III 11.57 6.347–52.62 28.9 2.55 2.63

Q4 H2_F2_2 CTmin XXI 55.67 37.01–66.87 53.7 2.75 3.01

Q5 H2_F2_2 CTmax XX 81.36 73.12–88.48 83.3 5.57 7

Q6 H2_F2_2 Preference I 108.2 83.54–109.2 69.3 3.27 4.62

Q7 H2_F2_3 Preference VII 31.48 24.02–53.87 87.1 3.61 5.78

F I G U R E  2  Linkage maps constructed for quantitative trait loci (QTL) analyses for (a) H1 F2 hybrids (M1 × FW1) and (b) H2 F2 hybrids 
(M1 × FW2) families, rendered with linkagemapview (Ouellette et al., 2018), with locations of QTL indicated (Table 1) [Colour figure can be 
viewed at wileyonlinelibrary.com]

10
0

80
60

40
20

0
cM

10
0

80
60

40
20

0
cM

0.
9 1

1.
2

1.
3

1.
5

1.
6

1.
8

1.
9

2.
1

2.
2

2.
4

2.
5

2.
7

2.
8 3

3.
1

3.
3

3.
4

3.
6

4.
3

4.
4

4.
6

4.
7 5

5.
1

5.
4

5.
5

5.
9 6

6.
5

6.
6

6.
9

7.
1

7.
5

7.
8

8.
5 10

Density (cM/Locus)

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI

Q1

Q2

Q3

Q4

Q5

Q6

Q7

(a)

(b)

 1365294x, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16396 by M
cgill U

niversity, W
iley O

nline L
ibrary on [30/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.wileyonlinelibrary.com


    |  2317SMITH et al.

2.6  |  Assembly of the genetic linkage maps

After barcode demultiplexing and filtering out low-quality reads in 
stacks (Catchen et al., 2013), we removed PCR duplicates from the 
raw sequences and aligned these cleaned sequences to the G. ac-
uleatus reference genome (Jones, Grabherr, et al., 2012) using the 
Burrows–Wheeler transform (Li & Durbin, 2010). Individual librar-
ies were concatenated and filtered (Puritz et al., 2014) using vcftools 
(version 3.0, Danecek et al., 2011) and split into chromosome-
specific variant call format (VCF) files using SnpSift (Cingolani et al., 
2012) to assemble the linkage maps chromosome by chromosome. 
We assigned markers to a linkage group with an initial logarithm of 
the odds (LOD) score of 3 after filtering out markers that showed 
high levels of segregation distortion and missing observations (>20% 
missing data) in lep-map3 (Rastas, 2017). Unassigned markers were 
subsequently added to the existing linkage group at a LOD score 
of 3 and a minimum size limit of five markers per linkage group. 
We ordered the markers using a minimum posterior value of 0.001 
and collapsed multiple markers when the probability difference be-
tween markers was <0.01 (Rastas, 2017). The final linkage map was 
phased in lep-map3 (Rastas, 2017) and subset for use in R (R Core 
Team, 2021) to generate a list of informative SNPs to use in subse-
quent analyses with the qtl package (version 1.44-9, Broman et al., 
2003). The final linkage maps were similar across families in length 
and spacing between markers, though the H2_F2 map had a higher 
density of markers (Table S1).

2.7  |  Quantitative trait loci mapping

We analysed the four F2 families separately with the same methodol-
ogy to assess the presence of QTL associated with the thermal traits 
and avoid the confounding effects of unique meiotic events. We 
calculated conditional genotype probabilities using a hidden Markov 
model, allowing for possible genotyping errors at a level of 0.0001 
using a Kosambi mapping function with a fixed step width, prior to 
running genome scans with a single QTL model (Arends et al., 2014; 
Broman & Sen, 2009). We determined the LOD score significance 
thresholds for each trait through permutation tests for each fam-
ily (5000 permutations per chromosome). We pulled significant QTL 
above the genome-wide significance threshold (α = 0.05; Greenwood 
et al., 2011), calculated confidence intervals of QTL location based 
on nearby markers, and estimated the percent variance explained 
by each QTL peak marker (PVE =1 − 10^((−2*LOD)/n). We identified 
two QTL associated with CTmin, two QTL associated with CTmax 
and three QTL associated with thermal preference (Table 1, Figure 2).

2.8  |  Environmental variables used to 
construct SDMs

We compiled environmental data widely used in the construc-
tion of SDMs to estimate suitable habitat in both present-day and 

end-of-century forecasts (Wiens et al., 2009), including bathyme-
try, sea ice extent and concentration, salinity, and sea surface tem-
perature (SST). We used 2014 data as our baseline year to match 
the forecasting baseline of the Fifth Assessment Report (IPCC, 
2014). We assumed a suitable habitat range for this species in the 
Pacific Northwest to consist of coastal areas (water depth <200 m) 
where sea ice is never present (i.e., no sea ice at the maximum 
extent). G. aculeatus has a broad salinity tolerance (Bayly, 2003; 
Divino et al., 2016) and salinity is not limiting in any part of the 
range (Zweng et al., 2013), so salinity was not included in the final 
present-day or forecasted models. We obtained bathymetry data 
from the General Bathymetric Chart of the Oceans (GEBCO) of the 
British Oceanographic Data Centre (Weatherall et al., 2015), and 
maximum sea ice extent data from the Multisensory Analyzed Sea 
Ice Extent – Northern Hemisphere (MASIE-NH) product (Fetterer 
et al., 2010). We obtained maximum and minimum daily statistical 
mean SST from Reynolds et al. (2007) to create rasters of the mean 
upper quartile, lower quartile, absolute minimum, absolute maxi-
mum and median temperatures for the baseline year (2014). We 
found the minimum, maximum and median temperature for each 
1-km2 grid cell across the range, then reduced the area based on 
the constraints of sea ice extent and bathymetry. Stickleback ther-
mal trait data were used to set the limits of the ranges within the 
possible area delineated by sea ice-free water of a suitable depth. 
Thermal trait measurements were based on our experimental find-
ings reported in the present study.

In the end-of-century forecast for suitable habitat, we assumed 
bathymetry to be consistent with the modern scenario. In contrast, 
because the Arctic Ocean is projected to be predominantly free 
of sea ice in the summer by the end of the century (Johannessen 
et al., 2004), with significant end-of-century reductions in winter/
spring sea ice concentration (reduced to a concentration of 0.1 at 
the Seward Peninsula; Johannessen et al., 2004), we conservatively 
set the maximum northern extent of the suitable habitat to the west-
ern tip of the Seward Peninsula (65°35′N). The water temperatures 
were increased based on projections for large marine ecosystems of 
Northern Oceans from global climate models (Alexander et al., 2018; 
IPCC, 2014). Raster and maps were created in R (version 4.1.2, R 
Core Team, 2021) using the packages raster (version 3.5.15, Hijmans 
et al., 2020) and rgeos (version 0.5.9, Roger et al., 2020).

2.9  |  Trait inclusion in SDMs

We incorporated experimental data on the wild marine populations 
(Figure 1c) to understand how inclusion of trait data may affect 
range projections under climate change. These trait-defined areas 
were overlain on the suitable habitat background to delineate pro-
jected presence based on thermal traits in both current-day and 
IPCC-projected Representative Concentration Pathways (RCPs) 
4.5 and 8.5. The trait values were kept constant from current day 
to end-of-century (i.e., not changed) in the “no evolution” projec-
tions. In contrast, in the “evolution” projections, we allowed traits 
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to change based on empirically derived evolutionary rate estimates. 
We allowed CTmin to evolve at a rate of 0.63 haldanes estimated 
from a selection experiment previously conducted on populations 
belonging to the same admixed genetic cluster as the sampled 
populations (Barrett et al., 2011; Morris et al., 2018). At present, 
there are no empirical estimates of CTmax evolution for threespine 
stickleback. Thus, as a proxy we used a known estimate of CTmax 
evolution in fish, which was observed in zebrafish (0.19 haldanes; 
Morgan et al., 2020). Given that the evolutionary rates for CTmin 
and CTmax from Barrett et al. (2011) and Morgan et al. (2020) are 
quite high relative to other recorded evolutionary rates for phe-
notypic traits (particularly physiological traits; Sanderson et al., 
2021), we also explored the influence of evolution on projected 
ranges when evolution occurred at more “typical” rates. To do so, 
we allowed both CTmin and CTmax to evolve at a mean rate from 
a large meta-analysis of phenotypic trait evolution (0.14 haldanes; 
Sanderson et al., 2021).

Since the rates of evolution used here are estimates based on 
whole-organism tolerance (Barrett et al., 2011; Morgan et al., 2020), 
and trait evolution is constrained by the underlying genetic architec-
ture of the trait (Barghi et al., 2020; Fisher, 1930; Orr, 1998; Ungerer 
& Riesebero, 2003), we next explored how selection acting on dis-
crete, identifiable loci could impact evolutionary rates, and the sub-
sequent effects on projected habitat range. To do so, we constructed 
models that scaled the evolutionary rate of CTmin or CTmax based 
on the observed genetic architecture from our QTL mapping (i.e., we 
scaled by the percent trait variation that is explained by each locus; 
“scaled evolution” projections). However, an important restriction in 
the evolution of CTmin for all models incorporating trait evolution 
(“evolution” and “scaled evolution” projections) was a hard boundary 
at 0°C, with the assumption that population persistence in a sub-
zero environment would require additional adaptations to CTmin 
improvement (e.g., extreme adaptations observed in Antarctic 
notothenioid fishes; Cheng & Detrich, 2007; Detrich et al., 2000; 
Shin et al., 2014). Similarly, we defined a hard boundary for CTmax 
evolution at 42°C (Morgan et al., 2018), with the assumption that 
the strength of selection for CTmax at this rate would result in de-
creased phenotypic variation and acclimatory ability leading to an 
upper thermal limit plateau (Gilchrist & Huey, 1999; Hangartner & 
Hoffmann, 2016; Morgan et al., 2020).

To quantify the differences in estimated suitable habitat under 
current-day and end-of-century conditions, we compared areas for 
each warming scenario to the equivalent scenario under current 
conditions. Similarly, to compare the differences in evolutionary 
scenarios, the area of each end-of-century evolutionary trajectory 
was compared to either the contrasting RCP projection or scaled 
evolution projection. For these comparisons, we used a North Pole 
Lambert azimuthal equal area projection for all maps, and georef-
erenced to known landmarks in arcgis version 10.8 (Environmental 
Systems Research Institute, 2017) to calculate area from the maps 
generated in R (version 4.1.2, R Core Team, 2021; conversion ratio 
of 7873.42).

3  |  RESULTS

3.1  |  Genetic basis of thermal traits

Threespine stickleback exhibited a wide thermal tolerance range 
bounded by a mean CTmin of 1.89°C (±1.04°C SD) and a mean 
CTmax of 30.1°C (±1.78°C SD) (Figure 1c; Figure S2), with these 
physiological traits being highly correlated (r = .79, Figure S1). These 
marine populations also tolerated a wide range of temperatures 
within which there was no observable stress response (5.0–25.0°C). 
Thermal preference values were slightly above the acclimation tem-
perature, but with more variance around the mean than is observed 
in the physiological traits (16.7 ± 3.19°C, Figure 1c; Figure S2). To 
determine if these measured thermal traits have a genetic basis and 
could therefore evolve in response to natural selection, we raised 
hybrid marine-freshwater F1 (N = 2) and F2 (N = 4; Figure S3) families 
under common garden conditions and used these fish for genome-
wide linkage map construction (Table S1) and QTL mapping. Using 
41,840 high-quality single nucleotide variants generated from RAD 
sequencing, we identified two significant QTL for CTmin, two sig-
nificant QTL for CTmax and three significant QTL for thermal prefer-
ence (Table 1, Figure 2). The trait variance that each QTL explained 
ranged from 28.9% (CTmin QTL on linkage group III) to 87.1% (ther-
mal preference QTL on linkage group VII).

3.2  |  Geographical range of projected 
suitable habitat

Based on sea ice extent and bathymetry alone, our present-day 
suitable habitat model suggests a marine range for this population 
from the southern Bering Sea to northern Washington State, and 
along the southeast Alaskan Panhandle (combined shaded area in 
Figure 3a, ~654,122 km2). End-of-century IPCC projections resulted 
in a substantial increase in the overall suitable habitat area for stick-
leback, with an 873,059-km2 increase in total area (combined shaded 
area in Figure 3b–e, ~1,527,181 km2) in association with a reduction 
in sea ice concentration at the northern end of the range.

3.3  |  “No evolution” SDM

We used our observed values of CTmin, CTmax and thermal pref-
erence to first inform the boundaries of three distinct environ-
mental regions in the SDMs: (i) a “Normal Behaviour” (NB) area 
that included environmental temperatures associated with an ab-
sence of an observable behavioural stress response (5.0–25.0°C), 
(ii) a “Within Physiological Limits” (WPL) area that included en-
vironmental temperatures within the range of their measured 
physiological limits (1.8–30.1°C) and (iii) an “Outside Physiological 
Limits” (OPL) area with environmental temperatures that fall 
outside the measured physiological limits (below 1.8 and above 
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30.1°C). When we include thermal trait data from the wild marine 
populations, nearly the entire range of suitable habitat was unaf-
fected by thermal tolerance limits, apart from a slight restriction 
at the northern end of the range (Figure 3a). However, when re-
stricted to the NB area, the range becomes confined to the west 
of the northern tip of Kodiak Island (Figure 3a), a limit coinciding 
with the northern-most known marine population in the Pacific 
Northwest genetic cluster (Morris et al., 2018). When tempera-
ture increases as projected by RCP 4.5, the “no evolution” model 
projects a 1,011,949-km2 increase in the NB area within this newly 
suitable habitat (Figure 3b) when compared to the NB area in the 
current-day model. Under RCP 8.5, the entirety of suitable habitat 
area remains within tolerable limits in the “no evolution” model 
(Figure 3c), with a smaller proportion of the range (10.7%) falling 
outside of the NB area as compared to the NB area under RCP 4.5 
conditions.

3.4  |  “Evolution” SDMs

Incorporating the evolution of CTmin and CTmax into the SDMs 
(“evolution” models) results in a large increase in the proportion of 
suitable habitat that falls within the NB area. At the rate of 0.63 hal-
danes for CTmin (Barrett et al., 2011) and 0.19 haldanes for CTmax, 
the entire range of the suitable habitat range falls within the NB area 
(Figure 3d,e). These represent a 311,974- and 155,680-km2 increase 
in the NB area relative to the “no evolution” models under RCP 4.5 
and RCP 8.5, respectively, and an increase in 1,271,032 km2 in the 
NB area when compared to the current-day model. If we only allow 
one of each of these traits to evolve at a time, we find that only 
CTmin evolution results in a change to range distributions compared 
to “no evolution” models (Figure S4). Reducing the rate of evolu-
tion for these traits to the mean rate of trait evolution reported 
in Sanderson et al. (2021) still results in all suitable habitat falling 

F I G U R E  3  Changes in the projected range of marine threespine stickleback (Gasterosteus aculeatus) in the northeast Pacific Ocean as a 
result of incorporating thermal traits into models of (a) current-day environmental conditions, and under IPCC end-of-century projections 
RCP 4.5 and 8.5, either without trait evolution (b and c; “no evolution” model, orange box) and with trait evolution at a rate of 0.63 haldanes 
for critical thermal minimum (CTmin) and a rate of 0.19 haldanes for critical thermal maximum (CTmax) (d and e; “evolution” model, red box). 
Sampling locations are in the southeast area of the range presented here [Colour figure can be viewed at wileyonlinelibrary.com]

Outside Physiological Limits
Within Physiological Limits
Normal Behaviour

(a) Current day

(b) RCP 4.5 (c) RCP 8.5

(d) RCP 4.5 (e) RCP 8.5
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within the NB area under both RCP 4.5 and RCP 8.5. Similarly, scal-
ing CTmin to evolve at a rate equivalent to the response expected if 
selection acted solely on the detected CTmin QTL on either linkage 
group III (PVE = 28.9%) or XXI (PVE = 53.7%) resulted in identical 
range distributions as the full “evolution” models. Given that CTmax 
evolution had no impact on these range projections, we did not con-
struct “scaled evolution” models for this trait.

4  |  DISCUSSION

In this study, we have produced the first “evolution-informed” SDMs 
that incorporate empirical data for temperature-associated traits 
and their evolution to understand how end-of-century projections 
change with the inclusion of these data. We assessed physiological 
(critical thermal minimum, [CTmin] and maximum [CTmax]), and be-
havioural (thermal preference) thermal traits for threespine stickle-
back from wild marine and freshwater populations, as well as hybrid 
F1 and F2 families. We provide novel characterization of QTL un-
derlying these traits in this species, which are likely to be impor-
tant genetic targets of selection under climate change. Finally, we 
incorporated these trait data and three empirical estimates of evo-
lutionary rates into mechanistic niche area SDMs under two climate 
change scenarios. When trait data are included in projections but 
held constant (i.e., “no evolution” models), there is an ~6-fold (RCP 
4.5) and 7-fold (RCP 8.5) increase in the geographical area of the 
NB area. The geographical ranges projected for the end-of-century 
increased by over 7-fold when CTmin was allowed to evolve at ob-
served trait-specific rates in the “evolution” models. Additionally, 
when a slower rate of CTmin was used or the rate was scaled by 
the percent of the trait variance that is explained by individual loci 
(reflecting a scenario where selection acted solely on those loci), this 
substantial increase in NB area was still attained by the end of the 
century under either RCP scenario. These changes to the projected 
species ranges under climate change underline the importance of 
incorporating behavioural as well as physiological data into SDMs 
(Sunday et al., 2012), as well as the key role that thermal trait evo-
lution could play in range shifts (Buckley et al., 2010; Evans et al., 
2015; Lyon et al., 2019).

Our models project a northward range expansion under climate 
change. This is unsurprising because climate change opens newly 
available thermal niche space in waters north of the current-day 
geographical range (Alexander et al., 2018) (as is seen in the “no evo-
lution” model northward expansion, Figure 3b,c). Northward range 
expansion with climate change due to increasing habitat availability 
has also been documented in birds (Melles et al., 2011; Rushing et al., 
2020; Tingley et al., 2009; Tombre et al., 2019), plants (D’Andrea 
et al., 2009), other fishes (Fossheim et al., 2015; Spies et al., 2020; 
Yapıcı et al., 2016) and pest species (e.g., ticks and mountain pine 
beetle; Clow et al., 2017; Kurz et al., 2008; Ogden et al., 2006; 
Sagurova et al., 2019; Sambaraju et al., 2019), as well as in large-
scale analyses of diverse taxa assessing the “fingerprints” of climate 

change impacts (Parmesan & Yohe, 2003; Platts et al., 2019). What is 
perhaps less expected is that our models reveal that evolution of cold 
tolerance, but not heat tolerance, had a substantial impact on pre-
dicted ranges under climate change, despite end-of-century climate 
change scenarios projecting an overall warmer, not cooler, world. 
This result occurs because even with climate change, waters within 
the marine range of this stickleback population are not projected to 
reach temperatures that would surpass their current CTmax limit. 
However, there is reason to think that the relevance of cold toler-
ance in climate change scenarios is not specific to this system and 
could be generally important to consider. Climate change is lead-
ing to an increase in the frequency of extreme temperature events 
(IPCC, 2014; Stott, 2016), including both extreme heat and extreme 
cold (Herring et al., 2015, 2018, 2020), which could drive selection 
on both CTmin and CTmax (Buckley & Huey, 2016; Denny & Dowd, 
2012; Hoffman & Sgrò, 2011; Kingsolver et al., 2011). Moreover, 
although northern waters are warming on average, there has been 
considerable spatial heterogeneity in temperature change (Walther 
et al., 2002). Importantly, northern waters are not predicted to be 
uniformly warmer under climate change (Alexander et al., 2018; 
IPCC, 2014) relative to the southern waters in this range, espe-
cially when seasonal variation is considered (Alexander et al., 2018). 
Seasonal variation and more extreme thermal events under climate 
change scenarios may force organisms to respond independently 
to both extreme heat and extreme cold in separate events (Herring 
et al., 2015, 2018, 2020; Walther et al., 2002), and coupled with the 
correlation between CTmin and CTmax (as observed here, Figure 
S1), population persistence will rely on adaptation in both upper 
and lower critical limits. Further investigations to test the empirical 
rate of evolution of thermal behaviour, physiology and the molecular 
underpinnings of these key traits would be well served by assess-
ing additional subpopulations along the latitudinal gradient inhab-
ited by stickleback to gain a more detailed understanding of these 
temperature-associated traits over a wider environmental range.

In interpreting the projections we present here, it is import-
ant to note that using a different methodology to assess thermal 
limits could result in different thresholds relating to tolerance and 
behaviour (Moyano et al., 2017). In addition, in the absence of an 
empirical estimate of the rate of evolutionary change for CTmax in 
threespine stickleback, we are using a rate observed for this trait 
in zebrafish as a proxy, which will necessarily be inaccurate for 
stickleback. It is unclear whether the true rate of CTmax evolution 
in stickleback might be slower or more rapid than the rate for ze-
brafish. For instance, it is possible that in threespine stickleback 
CTmax could evolve at similar rates as observed for CTmin, partic-
ularly given similarities in genetic architecture and the correlation 
between these traits in this study. Although incorporating evo-
lution of CTmax had no impact on our projected ranges because 
temperatures under RCP 4.5 and RCP 8.5 never exceeded current 
CTmax values, we suspect this trait will be of major importance 
in many other systems where populations reside in environments 
closer to their current upper thermal limits (e.g., Deutsch et al., 
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2008; Morgan et al., 2019; Nati et al., 2021). Ultimately, given 
the dramatic temperature changes that are projected for end-of-
century marine systems (IPCC, 2014, 2018), there is a critical need 
for empirical measures of evolutionary rates in thermal traits for 
predicting future species ranges.

While this set of mechanistic niche models builds upon current 
SDM work by incorporating functional traits critical to population 
persistence as well as varied evolutionary scenarios based on em-
pirical measurements, there are limitations to these projections. We 
present niche models of geographical species ranges, but future 
work in this area would benefit from including a robust metric of 
species distribution and population genetic structure within these 
mechanistic geographical ranges. Deriving distributional maps from 
statistical algorithms that rely on species occurrence and bioclimatic 
variables would move beyond binary outcomes of habitat suitability 
and provide a map of suitable habitat that is scored as an index and 
could underlie the static and evolving trait areas. Species distribu-
tions that build upon these evolution-informed species ranges could 
be an important tool for projecting population persistence under 
climate change.

The efficiency of translating the selection acting on a trait into 
evolutionary responses across generations will depend on the 
genetic architecture of the trait and the extent of environmental 
change (Dittmar et al., 2016; Orr, 2005; Rogers et al., 2012). Among-
trait genetic correlations can also either speed or slow adaptive 
evolution depending on whether correlations are reinforcing or 
antagonistic to the direction of selection (Etterson & Shaw, 2001). 
In this case, we observe a positive correlation between CTmin and 
CTmax that could facilitate selection for increased temperature 
tolerance at both upper and lower limits. However, the empirical 
rates of trait evolution that we incorporated into our SDMs were 
estimated using change in phenotypic variation across generations 
(Barrett et al., 2011; Morgan et al., 2020), rather than evolution 
at underlying loci. As such, it is likely that some proportion of the 
observed phenotypic change was due to plastic responses. In our 
“scaled evolution” models, we took a conservative approach by 
restricting phenotypic evolution to occur only through heritable 
change via the loci shown here to be associated with the trait. The 
large-effect loci that we identified are consistent with expecta-
tions from theory that suggest prolonged bouts of adaptation with 
gene flow (as expected in this system; Jones, Chan, et al., 2012; 
Rogers et al., 2012; Schluter & Conte, 2009; Schluter et al., 2010, 
2021) will favour architectures characterized by fewer, larger ef-
fect, more tightly linked alleles (Griswold & Whitlock, 2003; Via 
et al., 2012; Yeaman & Otto, 2011; Yeaman & Whitlock, 2011). 
However, the effects of the QTL identified from these populations 
are probably overestimated, while other loci may have gone unde-
tected (sensu the Beavis Effect; Beavis, 1994). These loci may have 
been detected in some F2 families and not in others because each 
mapping family has its own specific meiotic events that enable 
the identification of certain loci. Additionally, there are many key 
functional traits that are relevant to population persistence under 
a changing climate, and it is possible that the traits focused on 

here, or unexplored traits related to thermal performance, could 
display antagonistic pleiotropy.

Collectively, the inclusion of thermal traits and their evolution 
alters the projected ranges of marine threespine stickleback, with a 
substantial increase in the projected area that the species may oc-
cupy under climate change forecasts. Many traits are evolving in re-
sponse to climate change (Eliason et al., 2011; Gómez-Ruiz & Lacher, 
2019; Horton et al., 2020; Hovel et al., 2016) and SDMs that do not 
take trait data (and trait evolution) into account could provide less 
accurate predictions about future species distributions under cli-
mate change (Bush et al., 2016; Guisan et al., 2013; Huey et al., 2012; 
Kearney & Porter, 2004)— an issue of particular concern for species 
at risk and pest species undergoing range expansion (Bebber, 2015; 
Cullingham et al., 2011; McLeod et al., 2012). Our results provide a 
framework for addressing this problem, which will have critical im-
plications for the application of these models in policy, sustainable 
resource management and the protection of biodiversity in a chang-
ing climate.
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