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SUMMARY
Environmental stress caused by anthropogenic impacts is increasing worldwide. Understanding the ecolog-
ical and evolutionary consequences for biodiversity will be crucial for our ability to respond effectively. His-
torical exposure to environmental stress is expected to select for resistant species, shifting community
composition toward more stress-tolerant taxa. Concurrent with this species sorting process, genotypes
within resistant taxa that have the highest relative fitness under severe stress are expected to increase in fre-
quency, leading to evolutionary adaptation. However, empirical demonstrations of these dual ecological and
evolutionary processes in natural communities are rare. Here, we provide evidence for simultaneous species
sorting and evolutionary adaptation across multiple species within a natural freshwater bacterial community.
Using a two-phase stressor experimental design (acidification pre-exposure followed by severe acidification)
in aquatic mesocosms, we show that pre-exposed communities weremore resistant than naive communities
to taxonomic loss when faced with severe acid stress. However, after sustained severe acidification, taxo-
nomic richness of both pre-exposed and naive communities eventually converged. All communities experi-
encing severe acidification became dominated by an acidophilic bacterium, Acidiphilium rubrum, but this
species retained greater genetic diversity and followed distinct evolutionary trajectories in pre-exposed rela-
tive to naive communities. These patterns were shared across other acidophilic species, providing repeated
evidence for the impact of pre-exposure on evolutionary outcomes despite the convergence of community
profiles. Our results underscore the need to consider both ecological and evolutionary processes to accu-
rately predict the responses of natural communities to environmental change.
INTRODUCTION

Any environmental event that reduces individual fitness is

defined as a stress, and such stress is common in ecological

communities.1 Environmental stress is expected to intensify

worldwide due to increasing anthropogenic impacts from multi-

ple stressors.2 Severe stress can induce widespread mortality,

causing significant biodiversity decline and large shifts in com-

munity composition and functioning.3 Community responses to

stress are characterized by resistance (the capacity of a system

to withstand disturbance) and resilience (the ability to recover af-

ter disturbance).4,5 If community resistance and resilience are
C
All rights are reserved, including those
insufficient and stress is not alleviated, the biodiversity of a com-

munitymay collapse. Elucidating the ecological and evolutionary

mechanisms preventing or permitting community persistence

and recovery after severe environmental stress is crucial for un-

derstanding biodiversity change and improving its management

and conservation.

Pre-exposure to stress can mediate the response of complex

communities via phenotypic plasticity, species sorting, and

evolutionary adaptation.6 Phenotypic plasticity may enable indi-

vidual organisms to exhibit induced tolerance after exposure to

sublethal levels of stress.7 Historical stress may select against

susceptible species during pre-exposure, shifting community
urrent Biology 35, 1–13, March 10, 2025 ª 2025 Elsevier Inc. 1
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composition towardmore stress-tolerant taxa. This species sort-

ing process can maintain essential ecological interactions and

functioning and prevent community collapse when confronted

with levels of stress that would otherwise be lethal in the absence

of pre-exposure.8,9 While phenotypic plasticity and species sort-

ing are well-known outcomes of pre-exposure to stress,10,11

much less is known about the role of evolution in this process,

especially in complex natural communities. Experimental and

observational evo-evolutionary studies have demonstrated the

influence of local community context on evolutionary trajectories

and outcomes.12–15 A recent set of mathematical models and

laboratory experiments with simple communities demonstrated

that stress pre-exposure significantly shapes bacterial commu-

nity stability and adaptation.16 Historical exposure to environ-

mental stress is expected to select for genotypes with higher

relative fitness under severe stress, provided that adaptive al-

leles are present as standing variation within a species or appear

via mutation and have sufficiently large selection coefficients to

counter the effects of drift.17–19 If an increase in frequency of

adaptive genotypes rescues average population fitness, this

can ameliorate, prevent, or reverse population decline in

response to stress,20,21 thereby allowing greater mutational

input to maintain levels of genetic diversity.22,23 In an analogy

to the way that vaccination with a sublethal dose of a virus can

prepare an individual’s immune system for a potentially deadly

future infection, pre-exposure to low or moderate levels of

stressors can protect ecological communities from future severe

stress. Pre-exposure has been demonstrated to mitigate the

impact of severe environmental stress on community structure

in a variety of systems,24–27 even when the specific stressors

are different in each exposure period,28 and the effects can

extend to community and ecosystem functioning as well.29–31

Acidification is well-known to be a major environmental

stressor for aquatic ecosystems, and its detrimental effects on

biodiversity have been a considerable challenge for manage-

ment and conservation.31–35 Several whole-ecosystem studies

have been conducted on the acidification of freshwater lakes,

revealing declines in species diversity and disruptions to primary

production and nutrient cycling.36–38 Even though freshwater

acidification continues to be a relevant issue to ecological and

human health,39,40 understanding of the evolutionary processes

underlying community responses in aquatic ecosystems re-

mains limited. This holds for microbial communities despite their

capacity for rapid evolution.41,42 It is difficult to disentangle

evolutionary adaptation from ecological species sorting because

their effects can be indistinguishable using standard community

profiling techniques such as 16S or 18S rRNA genemetabarcod-

ing. As such, investigating the relative contributions of ecological

and evolutionary responses of natural communities requires

careful experimentation and monitoring of taxonomic and ge-

netic diversity dynamics over time.

To address this gap, we experimentally manipulated aquatic

mesocosms containing diverse microbial communities derived

from a natural unpolluted lake to test the impact of acidification

pre-exposure on community-wide taxonomic composition and

intraspecific genetic diversity after severe acidification. In addi-

tion, we tested the role of dispersal rate in moderating these ef-

fects. Under environmental stress, immigration via dispersal can

buffer against demographic decline and help maintain standing
2 Current Biology 35, 1–13, March 10, 2025
genetic and taxonomic variation, but the introduction of mal-

adapted types can also decrease average fitness depending

on dispersal rates.8,27,43 We used 16S metabarcoding to

profile microbial communities and metagenomic shotgun

sequencing to investigate the potential role of evolutionary adap-

tation within individual species during community response. We

hypothesized that (1) pre-exposure to moderate acidification will

select for acidophiles, thereby producing a more resistant com-

munity during severe and sustained acidification than naive

communities whose first experience with acidification occurs

at severe levels; (2) dispersal will mitigate loss in taxonomic di-

versity; and (3) species that survive severe acidification in pre-

exposed communities will evolve along distinct trajectories

compared with those in naive communities, leading to genetic

differentiation and greater resistance to genetic diversity loss.

Our experiment provides evidence for simultaneous species

sorting and evolutionary adaptation across multiple species

within a natural community. More broadly, this study generates

novel insight into the ecological and evolutionary dynamics of

complex microbial communities as they respond to severe

environmental stress.

RESULTS

Changes in community diversity following severe
acidification
We first tested the hypothesis that the ecological response

(species sorting) to acid stress would differ depending on

whether communities experienced pre-exposure to a milder

acid stress. Briefly, the experiment consisted of two phases (Fig-

ure 1). In phase I, pre-exposed mesocosms (red) were subjected

to weekly acidification treatments of pH 4 while naive meso-

cosms (blue) naturally fluctuated around pH 8.5 for approxi-

mately 7 weeks. In phase II, all mesocosms were subjected to

a press acidification treatment of pH 3 for approximately 8weeks

apart from four additional control mesocosms (green). Alpha di-

versity as measured by the Shannon index differed significantly

between pre-exposed and naive communities, indicating the ef-

fect of pre-exposure on amplicon sequence variant (ASV) rich-

ness and evenness (Figure 2A). The experiment began with

all mesocosms at approximately a Shannon index of 5.6, but

pre-exposure caused a significant decrease by the end of the

pre-exposure treatment (sample 2) (H0 = 18.64, Q < 0.05,

Benjamini-Hochberg Q-value based on p values from Kruskal-

Wallis tests) (Figure S1A). Although both pre-exposed and naive

communities decreased in diversity 1 week after severe acidifi-

cation, naive communities experienced a significantly greater

decline, resulting in lower Shannon values than pre-exposed

communities (sample 3) (H0 = 22.91, Q < 0.05). Pre-exposed

communities continued to decrease in diversity during the

8 weeks of severe acidification while naive communities recov-

ered slightly such that all treated communities converged on a

Shannon index of 1.8 regardless of pre-exposure (sample 4)

(H0 = 1.37, Q > 0.05). The diversity of control communities

remained unchanged throughout the experiment (sample

2�sample 3: H0 = 2.08, Q > 0.05; sample 3�sample 4:

H0 = 0.33,Q > 0.05). The observed recovery in Shannon diversity

of naive communities by the end of the experiment coincided

with a small but significant increase in the number of observed



Figure 1. Experimental design and pre-exposure treatments

(A) Schematic representation of the subset of mesocosms (circles) from the

two-phase experiment included in this study. Colors indicate pre-exposed

(red), naive (blue), and control (green) mesocosms, and numbers indicate pH.

Half of pre-exposed and naive mesocosms were under a global dispersal

regime in phase I while the other half were isolated (dispersal regimes not

shown).

(B) Measured pH of each mesocosm throughout the experiment. Each line

represents an individual mesocosm, colors indicate pH treatments, and ar-

rows indicate the duration of each experimental phase. Pre-exposed meso-

cosmswere acidified to pH 4 at the beginning of phase I on June 14/day 7, and,

in phase II, all mesocosms were acidified to pH 3 on August 2/day 56 until the

end of the experiment. Black dashed lines mark the four time points during the

experiment when samples were taken (June 7/day 0, July 26/day 49, August

9/day 63, and September 25/day 111), referred to as samples 1, 2, 3, and 4.
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ASVs (sample 3�sample 4: H0 = 17.95,Q < 0.05) whereas no sig-

nificant change was observed in pre-exposed communities

(sample 3�sample 4: H0 = 4.11, Q > 0.05) (Figure S1B). The pair-

wise change in diversity of pre-exposed communities was signif-

icantly negative between all time points, whereas in naive com-

munities it was only significantly negative immediately after

severe acidification (sample 2�sample 3), and by the end of

the experiment, it was significantly positive (sample 3�sample 4),

indicating recovery (Table S1; Figure S2). Pairwise change in the

Shannon index was significantly different between pre-exposed

and naive communities across all time points (Table S2).

Dispersal did not significantly affect Shannon values throughout

the experiment (Table S3). We also assessed the effects of pre-

exposure on community dynamics with a community stability
analysis, using the temporal mean divided by the temporal stan-

dard deviation of aggregate abundances.44 The results indicated

that pre-exposure slightly increased stability after severe acidifi-

cation in accordance with Shannon diversity, but this difference

was statistically insignificant (Table S4).

Distinct ecological dynamics of dominant acidophilic
bacteria in pre-exposed versus naive communities
Beyond changes to alpha diversity, we also investigated how the

ecological effects of acidification pre-exposure influenced com-

munity composition. While dispersal did not significantly affect

Bray-Curtis dissimilarity (F = 0.545, p = 0.831), pre-exposure

was a significant factor (F = 8.54, p = 0.001). Community compo-

sition of mesocosms shifted drastically due to acidification

in phases I and II (Figure 2B). All communities began with a large

diversity of bacteria, primarily from the Bacteroidota and

Proteobacteria phyla (representing 93.3% of bacterial ASVs at

the start of the experiment). Pre-exposed communities became

dominated by the family Acetobacteraceae and generaMucilagi-

nibacter and Granulicella by the end of phase I (sample 2). By

contrast, naive communities remained highly diverse, with an

increase in the genus Polynucleobacter and the family Sporich-

thyaceae, which were also present at relatively high frequencies

in control communities. Immediately after severe acidification in

phase II (sample 3), communities within pre-exposedmesocosms

continued to shift, with an increase in Acidocella and Acidosoma

and the disappearance of most minor genera. By sharp contrast,

the composition of naive communities collapsed to a single

genus, Acidocella, which overwhelmingly dominated (Figure 2B).

Although pre-exposed and naive communities were distinct in

the initial period after severe acidification, by the end of the exper-

iment (sample 4), regardless of pre-exposure and dispersal, all

communities converged and became dominated by Acidiphilium,

followed by Acetobacteraceae, Granulicella, and Acidocella. In

comparison, control communities not acidified in phase II showed

no clear change in community composition over time (Figure 2B).

Divergence followed by convergence in the evolutionary
trajectories of Acidiphilium rubrum in pre-exposed and
naive communities
Next, we tested the hypothesis that following severe acidifica-

tion, the evolutionary trajectories of the dominant species,

Acidiphilium rubrum, would differ depending on whether it had

experienced pre-exposure. Metagenomic shotgun sequencing

produced a final contig database of approximately 3.1 million

contigs totaling approximately 20.8 Gb, which were binned

into 81 metagenome-assembled genomes (MAGs) that included

A. rubrum and Acidocella also present in the 16S rRNA gene

sequencing data (supplemental information). To characterize

the impact of pre-exposure on the genetic diversity within

A. rubrum, wemapped reads to theA. rubrum reference genome

(NCBI RefSeq assembly GCF_900156265.1, strain ATCC 35905)

to call single nucleotide polymorphisms (SNPs) for population

genetic analyses. At the start of the experiment, A. rubrum

across communities were genetically similar (pre-exposed

FST = 0.02, naive FST = 0.04), but by the end of phase I (sample

2), they had diverged significantly both from starting populations

(pre-exposed FST = 0.92, naive FST = 0.66) as well as between

pre-exposed and naive communities (FST = 0.71) (Figure 3). After
Current Biology 35, 1–13, March 10, 2025 3



Figure 2. Pre-exposure caused significant changes in alpha diversity and community composition

(A) Shannon index values for pre-exposed (red), naive (blue), and control (green) communities over time. Black dashed lines mark the four time points during the

experiment when samples were taken (June 7/day 0, July 26/day 49, August 9/day 63, and September 25/day 111), referred to as samples 1, 2, 3, and 4.

(B) Genus-level taxonomic composition of pre-exposed, naive, and control communities. The top ten genera are colored individually, and all others are grouped

together in yellow. Phase I dispersal treatment is indicated by orange (dispersal) and purple (no dispersal) lines.

See also Figures S1 and S2 and Tables S1–S4.
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severe acidification (sample 3), A. rubrum across pre-exposed

and naive communities began to converge (FST = 0.45), resulting

in similar levels of genetic differentiation among all communities

by the end of the experiment regardless of pre-exposure (sample

4) (FST = 0.19–0.21) (Figure 3).
4 Current Biology 35, 1–13, March 10, 2025
Parallel evolution and the maintenance of genetic
diversity in pre-exposed acidophilic bacteria
To assess changes in the genetic diversity of the species remain-

ing at the end of the experiment, we mapped reads to a custom

genome database created by combining assembled MAGs with
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Figure 3. Average pairwise fixation index of SNPs within Acidiphilium rubrum
FST values are listed chronologically from left to right and from bottom to top (sample 1�sample 4), where values range from 0 (light blue) to 1 (dark red).
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reference genomes of Acidiphilium, Acidocella, and Granulicella

species (supplemental information). Wemeasured howmajor al-

leles in these species shifted over time by calculating genome-

wide polarized major allele frequency change (subtracting the

frequency of each major allele by the frequency of that same

allele at the next time point). Despite large heterogeneity in

read mapping across different species, changes in SNP allele

frequencies showed similar patterns within Acidiphilium and

Acidocella (Figure 4). For pre-exposed communities, all five

Acidiphilium and all three Acidocella species exhibited signifi-

cantly greater change in allele frequencies 1 week after severe

acidification (sample 2�sample 3) than the subsequent 8 weeks

of sustained severe acidification (sample 3�sample 4).

Additionally, except for A. iwatense and A. sp. KAb 2–4, species

in pre-exposed communities exhibited less change in allele fre-

quencies than naive communities in those 8 weeks (sample

3�sample 4).

Because A. rubrum was by far the most dominant species at

the end of the experiment (Figures S3 and S4), we further as-

sessed its evolutionary trajectory and parallelism. We hypothe-

sized that pre-exposed A. rubrum populations would maintain
greater genetic diversity during severe acidification, as reflected

by lower average nucleotide identity (ANI) and higher nucleotide

diversity (p). In support of this hypothesis, mean pairwise ANI of

A. rubrum was significantly lower in pre-exposed than naive

communities at both time points after severe acidification (sam-

ple 3: Z = 2.93, p < 0.05; sample 4: Z = 2.82, p < 0.01, Holm-

Bonferroni adjusted p values from Dunn’s test) (Figure 5A), and

p was also significantly higher in pre-exposed than naive com-

munities (sample 3: Z = �4.24, p < 0.001; sample 4: Z = �3.19,

p < 0.001) (Figure 5B). Additionally, we found evidence of parallel

genetic adaptation to acidification among A. rubrum popula-

tions. Of all SNPs present after severe acidification (present at

both sample 3 and sample 4), 36 SNPs were shared among all

pre-exposed communities, 31 SNPs were shared among all

naive communities, and only 12 SNPs were shared across pop-

ulations in pre-exposed and naive communities (Figure 6A;

Table S5). Permutation tests indicated that the number of shared

SNPs among the pre-exposed and naive communities was

significantly higher than neutral expectations when SNPs were

randomized across mesocosms (pre-exposed: p < 0.05; naive:

p < 0.05, n = 10,000) (Figure 6B).
Current Biology 35, 1–13, March 10, 2025 5



Figure 4. Allele frequency change of single nucleotide polymor-

phisms polarized to major alleles across species

We calculated allele frequency change by subtracting the frequency of the

major allele by the frequency of that same allele in a subsequent time point.

Colors indicate pre-exposed (red) and naive (blue) communities. Asterisks

indicate statistical significance based on Holm-Bonferroni adjusted p values

from Dunn’s test (*p < 0.05, **p < 0.01, ***p < 0.001). See also Figure S5.
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In summary, two major evolutionary patterns emerged: (1) in

pre-exposed populations, the greatest genetic change occurs

immediately after severe acidification, and (2) following long-
6 Current Biology 35, 1–13, March 10, 2025
term severe acidification, genetic change was significantly less

in pre-exposed than in naive populations. These patterns are

consistent with pre-exposure to moderate acid stress causing

parallel directional selection for acid-tolerant alleles, resulting

in more resistant communities that experience less dramatic

population bottlenecks when confronted with severe acidifica-

tion, thereby retaining greater genetic diversity.

DISCUSSION

Environmental stress can negatively impact community diversity

and ecosystem functioning, but pre-exposure to sublethal levels

of stress could mediate their persistence and recovery. Investi-

gating the contributions of species sorting and evolutionary

adaptation to this process deepens our understanding of the

underlyingmechanisms of community recovery during sustained

stress. Here, we provide evidence that pre-exposure to moder-

ate acidification altered the response of aquatic microbial com-

munities during severe acidification, both ecologically through

changes in community composition and evolutionarily via

genome-wide shifts of genetic variation across multiple species.

Species sorting reshapes community diversity under
stress
Pre-exposure to acidification had profound effects on bacterial

communities through species sorting, as indicated by signifi-

cantly lower Shannon index and markedly different relative

abundances of genera. Although pre-exposure was initially detri-

mental to alpha diversity, pre-exposed communities exhibited

relatively greater resistance to severe acidification. Shannon di-

versity not only decreased significantly less than naive commu-

nities but also exhibited significantly higher absolute values

immediately after severe acidification (sample 3).

This initial relative increase of community resistance in pre-

exposed communities against the immediate effects of severe

acidification (between sample 2 and sample 3) may be due in

part to species sorting that favored acidophiles previously at

very low frequencies at the start of the experiment, such as the

family Acetobacteraceae, which contains several acidophilic

genera, including Acidiphillium, Acidisoma, and Acidocella.45

Pre-exposure also selected for Granulicella, a genus of acido-

philes within the family Acidobacteriaceae,46 and Mucilagini-

bacter, a diverse genus within the family Sphingobacteriaceae

that contains species previously isolated from acidic forest

soils47 and documented to grow in acidic conditions as low as

pH 2.48 By contrast, these taxonomic groups were not detected

in naive communities at the end of phase I (sample 2) due to

either low abundance or absence. Instead, therewas an increase

in the genus Polynucleobacter, a ubiquitous and diverse fresh-

water bacterioplankton that can tolerate a wide range of environ-

mental conditions,49–52 and the family Sporichthyaceae, which

contains four named species of motile facultative anaerobes

with aerial hyphae isolated from soil, lake sediment, and human

skin.53–57 Both Polynucleobacter and Sporichthyaceae were

also observed in control communities at the end of pre-exposure

(sample 2), so their presence likely indicates seasonal effects or

selection by the mesocosm environment.

Immediately after severe acidification, alpha diversity within

naive communities crashed and became overwhelmingly



Figure 5. Effects of pre-exposure on evolu-

tion of Acidiphilium rubrum

(A) Pairwise average nucleotide identity (ANI) and

(B) nucleotide diversity (p) of A. rubrum genomes

within pre-exposed (red) and naive (blue) com-

munities after 1 week (sample 3) and 8 weeks

(sample 4) of severe acidification. The number of

scaffolds is in parentheses. Asterisks indicate

statistical significance based on Holm-Bonferroni

adjusted p values from Dunn’s test (*p < 0.05,

**p < 0.01, ***p < 0.001).
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dominated by Acidocella with minor contributions from

Acetobacteraceae, Acidisoma, and Granulicella in some but not

all mesocosms. Notably, Acetobacteraceae and Granulicella

were among the selected taxa in pre-exposed communities

at the end of pre-exposure (sample 2). Contrary to our hypothesis,

pre-exposure did not improve long-term community resistance,

with both Shannon indices and community composition ultimately
Curr
converging across pre-exposed and naive

communities by the end of the experi-

ment, perhaps because responses of bac-

terial communities to stress are rapid

enough to occur over a few weeks even

in communities with no history of expo-

sure to a stressor. However, despite this

convergence, pre-exposure did cause a

significantly different species sorting tra-

jectory immediately after severe acidifica-

tion (sample 3), thus providing supporting

evidence that pre-exposure to a weaker

dose of a stressor could allow more time

for both plastic and evolutionary re-

sponses by resistant organisms.

Shannon diversity consistently

decreased in pre-exposed mesocosms

throughout the experiment, albeit at

lower rates between each successive

time point. By contrast, alpha diversity

and richness (observed number of

ASVs) in naive communities did recover

significantly under severe acidification

(sample 3�sample 4) to eventually reach

the same levels as pre-exposed commu-

nities by the end of the experiment.

Although the 16S rRNA analysis included

mesocosms under dispersal, we did

not observe any significant effects of

dispersal on alpha diversity or richness

at any time point. Furthermore, there

was no additional input from the source

lake to mesocosms after the start of the

experiment, so the increase in the num-

ber of observed ASVs during recovery is

unlikely to be attributable to migration.

Thus, seemingly novel ASVs at the end

of the experiment, such as those as-

signed to the genus Acidiphilium, were
most likely previously present but at undetectably low absolute

or relative abundances and would have required sufficient posi-

tive selection to overcome loss through ecological drift. Our find-

ings are consistent with a previous study on the same source

lake that successfully recovered non-obligate acidophilic bacte-

ria capable of surviving at pH 2, which suggests that such acid-

ophiles are ever present in ordinary freshwater, even from
ent Biology 35, 1–13, March 10, 2025 7



Figure 6. Shared single nucleotide polymorphisms between and

among Acidiphilium rubrum populations

(A) The number of shared SNPs between and among pre-exposed and naive

communities consistently present after severe acidification (at both sample 3

and sample 4).

(B and C) Permutations of mesocosms over SNPs indicate that the number of

shared SNPs within (B) pre-exposed and (C) naive communities is significantly

greater than neutral expectations (pre-exposed: p < 0.05; naive: p < 0.05, N =

10,000). Red lines indicate the observed number of shared SNPs. See also

Table S5.
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protected water sources.58 Recovery of alpha diversity in naive

communities under severe acidification (sample 3�sample 4)

was therefore driven by a combination of population growth of

initially undetected acidophiles and increases in taxonomic

evenness.

All communities besides controls converged to a single profile

composed of mostly Acidiphilium at the end of the experiment.

Acidiphilium (meaning ‘‘acid lover’’) is a genus of gram-negative,

motile, flagellated, photosynthetic, straight rod Proteobacteria

containing eight named species.59–61 Acidiphilium are known

to be mesophilic and obligately acidophilic, growing between

pH 2.0–5.9 but not above 6.1.61 Here, we show that while Acid-

iphilium may not grow well under neutral pH conditions, it does

persist at low levels in natural lake freshwater of approximately

pH 8.5 and can rapidly increase if environmental conditions

become sufficiently acidified. Putative acidophiles selected

through species sorting in pre-exposed communities (Acetobac-

teraceae and Granulicella) also persisted at the end of the

experiment and at slightly greater frequencies than in naive

communities, supporting the hypothesis that pre-exposure has

long-term effects on species composition.

Evolutionary responses to acidification
We identified and tracked SNPs across time in nine reference

genomes (five Acidiphilium species, three Acidocella species,

and Granulicella sp. 5B5) and a single MAG annotated as an un-

known Rickettsiales bacterium. Significant changes in genome-

wide allele frequencies, including SNPs where the major allele

was completely replaced, were observed in all genomes be-

tween at least two time points, demonstrating the role of evolu-

tionary processes in community responses to acidification.

Although we cannot definitively conclude that adaptation played

a causal role in community responses (i.e., evolutionary and

ecological responses could be occurring at least partially inde-

pendently62), we did observe significant evolutionary change

within successful acidophiles, which may have contributed to

their persistence. Because these genomes were not detected

in control communities, we were unable to characterize and

directly compare SNPs from populations that did not experience

severe acidification. However, of the six other MAGs that

mapped reads from control communities, genome-wide allele

frequency changes were significantly lower, as expected in the

absence of a stressor (Figure S5).

We tracked SNPs in pre-exposed communities at the onset of

severe acidification (sample 2�sample 3) as well as in both pre-

exposed and naive communities throughout the 8weeks of severe

acidification (sample 3�sample 4) across all detected species of

Acidiphilium andAcidocella. These eight acidophilic species inde-

pendently exhibited strikingly similar patterns of genome-wide

allele frequency changes (Figure 4). In pre-exposed communities,

significantly greater change was observed 1 week after severe

acidification (sample 2�sample 3) than the following 8 weeks until

the end of the experiment (sample 3�sample 4). In those 8 weeks

of severe acidification, six of the eight acidophilic species

(excluding A. iwatense and A. sp. KAb 2–4) exhibited significantly

lower change in genome-wide allele frequencies in pre-exposed

communities than naive communities. Importantly, this shows

that the magnitude of evolutionary response is largest upon initial

exposure despite the stressor being applied at a lower level. This



ll

Please cite this article in press as: Xu et al., Pre-exposure to stress reduces loss of community and genetic diversity following severe environmental
disturbance, Current Biology (2025), https://doi.org/10.1016/j.cub.2025.01.037

Article
is consistent with these evolutionary changes representing the

beginning of an ‘‘adaptive walk’’ toward a new fitness optimum,

when theory predicts changes will be the greatest.63 Thus, pre-

exposure served to initiate adaptation earlier, with the response

diminished upon subsequent exposure to greater levels of stress.

This may be viewed as analogous to the response to vaccination,

where exposure to a weak dose of virus permits an immune

response that reduces the impact of exposure to greater viral

loads in the future.

The dominance of Acidiphilium rubrum

16S rRNA and MAG analysis indicated that by the end of the

experiment, all communities, regardless of pre-exposure, were

dominated by a single genus, Acidiphilium (with minimal contri-

butions by Acidocella). Competitive metagenomic readmapping

ofAcidiphilium reference genomes revealed thatAcidiphilium ru-

brum was largely responsible for this dominance, followed by

Acidiphilium sp. PA (Figure S4). A. rubrum is a highly acidophilic

purple bacterium that can be isolated from acid mine drainage

sites of pH 2–3.64–66 The ascendancy of A. rubrum over other

Acidiphilium and Acidocella species suggests that A. rubrum

has a selective advantage over other acidophiles at such low

pH, but the mechanisms of pH homeostasis are not well under-

stood in acidophiles.67 The genetic divergence of A. rubrum

caused by acidification pre-exposure and subsequent conver-

gence after severe acidification indicates independent evolu-

tionary trajectories that eventually reached the same destination

(Figure 3). However, further population genetic analysis via pair-

wise ANI and p reveals that pre-exposure allowed A. rubrum to

retain significantly greater genetic diversity at both time points

after severe acidification, potentially because pre-exposure

induced directional selection, producing more acid-tolerant

populations that underwent less severe bottlenecks when con-

fronted by severe acidification (Figure 5). This is consistent

with previous theoretical and empirical findings that mercury

pre-exposure retained greater microbial biomass and better-

maintained community stability following a high-level mercury

pulse perturbation.16 While we were unable to determine the ge-

netic basis for acid resistance in A. rubrum, we did identify a

number of genes containing parallel SNPs, including 16S and

23S rRNA (Table S5). This may indicate that ribosomes were

targets of selection under severe acidification, as they are in

extremophiles adapted to extreme heat.68,69 However, these

parallel SNPs remained polymorphic at the end of the experi-

ment (sample 4), indicating that sweeps were incomplete. In

pre-exposed mesocosms, genome-wide diversity was main-

tained, and parallel SNPs were concentrated in the 16S-23S

rRNA operon, consistent with a gene-specific sweep.70 In

summary, the high number of parallel SNP changes suggests

that severe acidification caused strong selection, and the

distribution of shared SNPs suggests that distinct SNPs were

targeted in pre-exposed and naive communities (Figure 6). While

it may be counterintuitive that selection due to pre-exposure can

prevent loss of genetic diversity, our study indicates that pre-ex-

posed communities may suffer less dramatic population

bottlenecks when confronted with stronger selection, which

can ultimately help maintain genetic diversity.

In this study, we show that pre-exposure to environmental

stress can help biological communities maintain taxonomic and
genetic diversity against future severe stress. Despite the conver-

gence of community composition between pre-exposed and

naive communities, and despite the loss of many taxa in all acid-

ified communities, we demonstrate that species sorting due to

pre-exposure generated greater community resistance and miti-

gated declines in taxonomic diversity. Additionally, we show

that pre-exposure caused distinct evolutionary processes that re-

sulted in reduced genome-wide change following severe acidifi-

cation and greater levels of genetic diversity in the species that

dominated acidified environments. Thus, we provide evidence

for the dual roles of species sorting and evolutionary adaptation

in community responses to severe stress, as well as the impor-

tance of pre-exposure for adaptation.10,17,71–74
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METHOD DETAILS

Study site
We conducted the experiment at the Large Experimental Array of Ponds (LEAP) facility located at the Gault Nature Reserve in

Mont-Saint-Hilaire, Quebec, Canada. We filled replicate 1,000 Lmesocosms onMay 23/24, 2017, by sourcing water from the nearby

Lake Hertel (45�32’ N, 73�09’ W), which is protected under UNESCO as part of the Mont Saint Hilaire Biosphere Reserve. The

naturally mesotrophic lake has a maximum depth of 8.2 m and a natural pH of 7.5–9.5.101,102 We used a cloth with approximately

1 mm mesh size to filter water from Lake Hertel before it entered the mesocosms, which prevented introduction of fish and large

invertebrates leaving a community of naturally co-occurring zooplankton, phytoplankton, bacteria, and viruses.

Experimental design
We designed a biphasic experiment to test the isolated and interacting effects of several levels of acidification pre-exposure and

dispersal regimes on community response to severe acidification, which has been described in a previous study.26 Here, we focused

on only the 16mesocosms pre-exposed to the strongest acidification treatment of pH 4 as well as the 16 naı̈vemesocosms that were

left untreated and remained at their natural acidity of approximately pH 8.5 (Figure 1A). In phase I of the experiment, we maintained

pre-exposure to pH 4 through weekly pulse titration with 10N H2SO4 for seven weeks, from June 14 – August 2. Pre-exposed mes-

ocosms exhibited a sharp decrease in pH buffering capacity with each acidification treatment in the first weeks of phase I (Figure 1B).

Half of pre-exposed and naı̈ve mesocosms were also under a global dispersal regime where we mixed 1% of water from each meta-

community of four mesocosms in a pool and then redistributed it on a weekly basis allowing for migration within metacommunities.

No additional water was added to any mesocosm after the experiment commenced. We initiated phase II on August 2 when all mes-

ocosms were acidified to a stable pH of 3 and dispersal regimes were terminated. No mesocosms exhibited pH buffering capacity in

phase II. Phase II lasted for approximately eight weeks until the end of the experiment on September 25. We also established four

isolated control mesocosms subjected to neither phase I nor phase II treatments.

Sample collection
Wemonitoredmesocosmsweekly for water pH (Figure 1B) usingmultiparameter sondes (Yellow Spring Instruments, Ohio). We used

integrated water samplers made from 2.5 cm diameter PVC tubing to sample water biweekly from the top 35 cm of the water column

at five random locations within each mesocosm until a total of 2 L of water was collected. We subsequently stored water samples in

dark, triple-washed Nalgene bottles at 4�C before filtration later that same day. We used independent samplers and dark bottles for

each mesocosm to minimize cross-mesocosm contamination. For each sample, we filtered 500 mL of water at an on-site lab using

0.22 mmpore size, 47mmdiameter hydrophilic polyethersulfone (PES) membrane filters (Millapore). We then transported filters to the

laboratory on dry ice and stored them at -80 �C prior to DNA extraction.

DNA extractions
We extracted DNA from samples collected across four time points: 1. At the beginning of the experiment one week prior to pre-expo-

sure treatment (June 7/day 0), 2. At the end of phase I after six weeks of pre-exposure (July 26/day 49), 3. At the beginning of phase II

one week after severe acidification (August 9/day 63), and 4. At the end of the experiment after approximately eight weeks of severe
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acidification (September 25/day 111) respectively referred to as Sample 1, Sample 2, Sample 3, and Sample 4 (Figure 1B). In total,

there were 128 samples (16 mesocosms X 2 treatments X 4 time points) and 12 controls (4 control mesocosms X 3 time points

excluding Sample 1). We extracted and purified total genomic DNA from half filter papers using the DNeasy PowerWater kit (QIAGEN)

following QIAGEN guidelines including a 5-minute vortex of the filter with beads and an additional incubation of 30 minutes at 37�C
with 1 mL Rnase (Thermo Scientific) after cell lysis and before the first supernatant transfer to remove RNA contamination.103

16S rRNA gene sequencing
We profiled bacterial community composition using 16S rRNA amplicon sequencing. Specifically, we used the primers U515_F (5’-

ACACGACGCTCTTCCGATCTYRYRGTGCCAGCMGCCGCGGTAA-3’) and E786_R (5’- CGGCATTCCTGCTGAACCGCTCTTCC

GATCTGGACTACHVGGGTWTCTAAT-3’) to target an approximately 200 bp amplicon of the V4 region of the 16S rRNA gene as

described previously.78 We treated samples that initially failed to PCR amplify with sodium acetate and then ethanol precipitated

with GenElute-LPA linear polyacrylamide (Sigma-Aldrich) to increase DNA concentration.104 Genomic DNA quality control,

sequencing library preparation, two-step PCR,103 and amplicon sequencing via Illumina MiSeq v2 PE250 was conducted at the

McGill Genome Centre. An average of 28,387 (range: 0–85,039) 16S rRNA reads were produced per sample. A total of 134

(95.71%) samples were retained for subsequent analysis after removing six samples that each produced less than 5 reads.

Amplicon sequence analysis
We processed raw 16S rRNA amplicon sequences using the QIIME2 bioinformatics pipeline.79 We first removed primer sequences

using cutadapt followed by identification of ASVs using DADA2.80,81 We aligned ASVs using MAFFT and constructed phylogenetic

trees using FastTree 2 based on Jukes-Cantor distances.82,105 We created a custom reference database by using the U515_F/

E786_R primers to in silico extract the target 16S rRNA V4 region from the SILVA 138 database.75

We generated taxonomic weights according to occurrence records in freshwater habitats using redbiom and Qiita by limiting

sample type to ‘‘fresh water’’ or ‘‘freshwater’’ and context to ‘‘Deblur_2021.09-Illumina-16S-V4-90nt-dd6875’’83,84,106. We used a

total of 6,206 V4 16S rRNA sequences (6,003 ‘‘fresh water’’ and 203 ‘‘freshwater’’) to weight taxonomic assignment towards those

found previously in freshwater environments. We then assigned taxonomies to ASVswith a naı̈ve Bayes classifier trained using scikit-

learn on the extracted SILVA 138 database that was modulated by the freshwater taxonomic weights.85 We accepted taxonomic

assignments if classification confidence was at least 0.7.107

Metagenomic shotgun sequencing
We selected samples from all isolated (i.e., no dispersal in phase I) pre-exposed and naı̈ve mesocosms except for one mesocosm

from each phase I treatment for further metagenomic analysis along with control mesocosms. In total, we subjected 68 samples

across the four time points to deep sequencing at an average of 220 million reads per sample. We focused sequencing on phase

I samples (Sample 1 and Sample 2 at �330 million reads/sample) compared to phase II samples (Sample 3 and Sample 4 at

�110 million reads/sample) to maximize the probability of detecting and quantifying genetic diversity within dominant phase II

species that were initially at low abundances in phase I. Quality control, library prep, and sequencing on Illumina NovaSeq 6000

PE150 were conducted at the McGill Genome Centre.

Metagenomic analysis
We processed and analyzed metagenomic sequences within the anvi’o framework.86 We first removed Illumina TruSeq LT adaptors

with cutadapt and quality filtered reads using illumina-utils.87 We used MEGAHIT to co-assemble reads from the same mesocosm

across the four time points.88 We merged all contigs and removed those less than 2,500 bp. We then mapped reads from each sam-

ple to contigs using Bowtie 2 and SAMtools.89,90 We identified prokaryotic genes in the contigs using Prodigal.91 We used hidden

Markov models for collections of 71 bacteria, 76 archaea, and 83 protist single-copy core genes (SCGs) to identify and recover

them from contigs.108–110 The final contig database consisted of about 3.1 million contigs totaling approximately 20.8 Gb, and 2.1

million annotated genes from an estimated 2,328 bacterial and 64 eukaryotic genomes.

We clustered contigs into bins using CONCOCT and MetaBAT 2, which we then dereplicated and aggregated into 81 metage-

nome-assembled genomes (MAGs) using DAS Tool.92–94 We estimated completeness and redundancy of MAGs based on SCG col-

lections. We taxonomically classified 22 MAGs based on 22 unique bacterial SCGs from the Genome Taxonomy Database (GTDB)

using DIAMOND (Table S6).95,76 The MAG assigned to A. rubrum constituted 97%–98% of all mapped reads at the end of the exper-

iment (Sample 4) across both pre-exposed and naı̈ve communities. We included A. rubrum along with high-quality MAGs (complete-

ness >90% and redundancy <10%) for further analysis. For A. rubrum, we used a reference genome approach to identify single

nucleotide polymorphisms (SNPs) occurring in at least two samples and calculated pairwise fixation index (FST) within anvi’o.111,112

Three genera (Acidiphilium, Acidocella, andGranulicella) dominated phase II (Sample 3 and Sample 4) communities based on 16S

amplicon and MAG results. We further assessed population microdiversity of species within these genera using InStrain.96 We

obtained 44 reference genomes from 17 species within Acidiphilium, Acidocella, and Granulicella from NCBI RefSeq and merged

them with MAGs to create a custom genome database. We dereplicated this database to 29 reference genomes and 29MAGs using

dRep, CheckM, Mash, and FastANI with a Mash sketch size of 10,000 and a minimum overlap between genomes of 0.3.77,97–100 We

used Prodigal to profile genes for each genome, and we competitively mapped reads against reference genomes and MAGs using

Bowtie2 and SAMtools.89–91 Reads from pre-exposed and naı̈ve communities mapped to five Acidiphilium species (A. iwatense,
e3 Current Biology 35, 1–13.e1–e4, March 10, 2025
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A. multivorum, A. rubrum, A. sp. C61, A. sp. PA), three Acidocella species (A. aminolytica, A. facillis, A. sp. KAb 2-4), Granulicella sp.

5B5, and a single MAG assigned to an unnamed species within the order Rickettsiales (family SXRF01, genus RFOF01) (Figures S3

and S4). Reads from control communities mapped only to other MAGs. We called SNPs using a minimum coverage threshold of 5

and a minimum SNP frequency of 0.05 using InStrain.96

QUANTIFICATION AND STATISTICAL ANALYSIS

Amplicon sequence analysis
We assessed alpha diversity using the natural logarithm Shannon index computed after we rarified ASVs of each sample to a depth of

1,178 based on saturation of rarefaction curves and maximization of the number of included samples113 (Figure S6). We compared

Shannon values between pre-exposed and naı̈ve communities at each time point using Kruskal-Wallis tests.114 We also assessed

longitudinal differences in Shannon diversity using Wilcoxon signed-rank and Mann-Whitney U tests and statistical significance

via Benjamini & Hochberg corrected q-values.115–118 We also assessed community stability using a community stability metric

calculated as the temporal mean divided by the temporal standard deviation of aggregate abundances across all four time points.44

We assessed the effects of pre-exposure and dispersal on beta diversity via PERMANOVA of Bray-Curtis dissimilarity with 999

permutations using the rarified ASVs.119

Metagenomic analysis
We used InStrain to calculate scaffold-level metrics including ANI and p.96,120,121 We calculated allele frequency change of polarized

major alleles through subtracting the frequency of the major allele at each SNP by the frequency of that same allele in a subsequent

time point. We longitudinally compared pairwise ANI and p as well as allele frequency changes between pre-exposed and naı̈ve

communities using Dunn’s test and assessed statistical significance via Holm-Bonferroni adjusted p-values.122,123 For the most

dominant species identified at the end of the experiment (A. rubrum), we used permutation tests randomizing the mesocosm of

each SNP to assess the significance of the number of shared SNPs between populations in pre-exposed and naı̈ve communities.

We only considered SNPs consistently present after severe acidification (at both Sample 3 and Sample 4) as a conservative approx-

imation for adaptation.
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